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Abstract This paper introduces a novel method for estimation of the parameters of the con-
stant elasticity of variance model. To do this, the likelihood function will be con-
structed based on the approximate density function. Then, to estimate the param-
eters, some optimization algorithms will be applied.
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1. Introduction

The constant elasticity of variance evolves according to the following stochastic
differential equation (SDE)

dSt = µStdt+ δS
β
2
t dWt, (1.1)

where µ is a constant, δ is scaling parameter, β is called elasticity and Wt is Wiener
process. In finance this model is used as an underlying asset model to describe share
price. To capture shortcomings of the Black-Scholes model [4] such as leverage effect
and volatility smile, Cox introduced the CEV model [6]. The inverse relationship
between the share price and volatility are shown by this model for β < 1. This model
has been used by many authors to price and hedge in option pricing problems. In
case of European options see for example [6, 7, 17] and for American options refer to
[5, 12, 16].

Beckers used the regression approach to estimate the parameters of CEV model [2].
Emanuel and MacBeth [9] applied an optimization technique to find β. Constructing
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three likelihood functions, based on the values of β, for different values of δ, Marsh
and Rosenfeld estimated β and δ for interest rates [13]. To maximize the likelihood
function, Tucker et al. used the Newton-Raphson method to estimate β and δ jointly
for foreign currency exchange rates [18]. To estimate the parameters of the CEV
model, Melino and Turnbull maximized the likelihood function constructed from a
modified form of the density function [14].

In this paper, a novel approach to estimate the parameters of the CEV model is
presented which is based on optimization techniques. The proposed formulation is a
simple and straightforward approach and it can be applied to any CEV process. It
can also be used to estimate a vector of parameters simply.

The rest of the paper is organized as follows: In section 2 construction of the likeli-
hood function based on the approximate transition density function will be described.
Presentation of the optimization algorithms is the subject of the section 3. Numerical
result will be given in section 4.

2. Estimation strategy

The transition density function of the SDE (1.1) is given by, Cox for β < 2 [6] and
Emanuel and MacBeth for β > 2 [9],

pSt+1|St
(st+1, 1) = |2− β|k

1
2−β (xz1−2β)

1
4−2β e−x−zI 1

|2−β|
(2
√
xz), (2.1)

where Iν is the modified Bessel function of the first kind of order ν and, for τ = 1
day,

k =
2µ

δ2(2− β)(eµ(2−β)τ − 1)
,

x = kS2−β
t eµ(2−β)τ ,

z = ks2−β . (2.2)

In the case of β = 2 the CEV model turns to Black-Scholes model, that is, inserting
β = 2 in (1.1) yields

dSt = µStdt+ δStdWt,

which is the Black-Scholes equation for underlying asset. The transition density of the
Black-Scholes SDE is given by lognormal distribution [4]. To estimate δ and β jointly,
instead of using the true likelihood function, we will use an approximate likelihood
function. In the case of using the true likelihood function a number of disadvantages
occur. The true likelihood function includes the modified Bessel function, then at each
evaluation the modified Bessel function must be computed which is computationally
expensive. Another disadvantage is that the true likelihood as a function of β has
a complicated nature. Based on the values of β, true likelihood function has three
cases. However, the approximate likelihood function lacks these problems.

Now we want to describe the approximate likelihood technique used to estimate δ
and β jointly. This method is easier to understand and to implement. Considering
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the transformation Xt = lnSt and using Ito’s lemma for Xt = lnSt yields

d lnSt = (µ− 1

2
δ2Sβ−2

t )dt+ δS
β−2
2

t dWt. (2.3)

Integrating from n to n+ 1, one can get

lnSn+1 − lnSn = µ− 1

2
δ2

∫ n+1

n

Sβ−2
t dt+ δ

∫ n+1

n

S
β−2
2

t dWt

≈ µ− 1

2
δ2Sβ−2

n + δS
β−2
2

n ϵn, (2.4)

where ϵn is a forward N (0, 1) increment which is independent of Sn. So using the
fact that Xn = lnSn, we can write the time discrete form of SDE (2.3)

Xn+1 =Xn + µ(Xn) + δe
β−2
2 Xnϵn

∼ N (Xn + µ(Xn), δ
2e(β−2)Xn), (2.5)

where µ(Xn) = µ− 1
2δ

2e(β−2)Xn is the expected value of the daily returns Xn+1−Xn,
conditional onXn andN is the normal distribution. Hence the approximate transition
density function can be written as

fXn+1|Xn
(xn+1, 1) =

1
√
2πδe

β−2
2 xn

exp{−1

2
(
xn+1 − xn − µ(xn)

δe
β−2
2 xn

)2}. (2.6)

Now the likelihood function for series {Xn : n = 0, 1, · · · , N} corresponding to a
sample of share price {Sn : n = 0, 1, · · · , N} can be formed as follows

L(β, δ) = fX0(x0)
N−1∏
n=0

fXn+1|Xn
(xn+1, 1). (2.7)

An advantage of using this likelihood function instead of the true likelihood function
is that it can be applied for any CEV process. Then

l(β, δ) = lnL(β, δ) = ln fX0(x0) +

N−1∑
n=0

ln fXn+1|Xn
(xn+1, 1). (2.8)

To estimate β, δ jointly, the above function must be maximized with respect to β, δ.
Instead of maximizing the above function, it is appropriate to maximize the function

1

N
l(β, δ) =

1

N
ln fX0(x0) +

1

N

N−1∑
n=0

ln fXn+1|Xn
(xn+1, 1). (2.9)

For large N , one can get approximately

l(β, δ) =
1

N

N−1∑
n=0

ln(
1

√
2πδe

β−2
2 xn

exp{−1

2
(
xn+1 − xn − µ(xn)

δe
β−2
2 xn

)2})

= − ln δ − β − 2

2N

N−1∑
n=0

xn − 1

2
ln 2π − 1

2N

N−1∑
n=0

z2n

δe
β−2
2 xn

, (2.10)
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where zn = xn+1 − xn − µ(xn), for n = 0, 1, · · · , N − 1, are realization of the random
variable Zn = Xn+1 −Xn − µ(Xn). Now we can define an optimization problem to
estimate β, δ jointly as follows

Max l1(β, δ)

S.to :

β ∈ R, δ > 0, (2.11)

where

l1(β, δ) = − ln δ − β − 2

2N

N−1∑
n=0

xn − 1

2N

N−1∑
n=0

z2n

δe
β−2
2 xn

. (2.12)

3. Optimization algorithms

In order to estimate β, δ simultaneously using the above optimization problem
(2.11), we need to bound β, δ. Let β0, β1, δ0 and δ1 be real numbers with β0 < β1

and 0 < δ0 < δ1. Setting β0 ≤ β ≤ β1 and δ0 ≤ δ ≤ δ1 one can write

Max l1(β, δ)

S.to :

β0 ≤ β ≤ β1,

δ0 ≤ δ ≤ δ1. (3.1)

In the literature this is called a constrained optimization problem. First we change
the above maximization problem to a minimization one. Then setting x = β and
y = δ, we have

Min l2(x, y) = −l1(x, y)

S.to :

g1(x, y) = x0 − x ≤ 0,

g2(x, y) = x− x1 ≤ 0,

g3(x, y) = y0 − y ≤ 0,

g4(x, y) = y − y1 ≤ 0. (3.2)

In the second step, using penalty function method [1], we will transform the resulted
constrained minimization problem to a unconstrained problem. To do this, we need
some appropriate penalty function. Following [1], we find that φ(x) = max(0, x)2 is
a suitable choice for inequality constraints. Thus

Min F (x, y) = l2(x, y) + Cp(x, y)

S.to :

x, y ∈ R, (3.3)

in which C > 0 and p(x, y) are called penalty parameter and function respectively
and

p(x, y) = φ(g1(x, y)) + φ(g2(x, y)) + φ(g3(x, y)) + φ(g4(x, y)). (3.4)
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The above minimization problem is an unconstrained problem.

3.1. Nelder-Mead. The Nelder-Mead algorithm [15] is minimization algorithm which
can be applied to minimize multivariate function. This algorithm is summarized below
for solving a two dimensional problem:

(1) Let a, b and c be three initial guess of the solution with F (a) < F (b) < F (c).
(2) If three points or their function values are sufficiently close to each other, then

declare a to be the minimum and terminate the procedure.
(3) Otherwise, expecting that the minimum may be at the opposite side of the

worst point cover the line ab, take e = m+ 2(m− c), where m = a+b
2 ,

• and if F (e) < F (b), take e as the new c; otherwise take r = m+e
2 = 2m−c,

• and if F (r) < F (c), take r as the new c; if F (r) = F (b), take s = c+m
2 ,

• and if F (s) < F (c), take s as the new c; otherwise, give up the two
points b, c and take m and c1 = a+c

2 as the new b and c, reflecting our
expectation that the minimum would be around a.

(4) Return to Step 1.

3.2. PSO. Many conventional techniques such as gradient-based search algorithms
and various mathematical programming methods have been proposed to deal with
optimization problems. However, these techniques have severe limitations in han-
dling nonlinear, discontinuous or multi-modal functions and constraints because ex-
act methods depend on gradient information and are more likely to get stuck at local
optima. While, meta-heuristic algorithms such as Genetic Algorithms (GAs) [10] and
Particle Swarm Optimization (PSO) [11], do not depend on gradient information. In
this situation, meta-heuristic algorithms are still able to work satisfactorily.

Particle swarm optimization is another evolutionary computation technique de-
veloped by Eberhart and Kennedy [11, 8] in 1995, which was inspired by the social
behavior of bird flocking and fish schooling. PSO has its roots in artificial life and
social psychology, as well as in engineering and computer science. It utilizes a pop-
ulation of particles that fly through the problem hyperspace with given velocities.
At each iteration, the velocities of the individual particles are stochastically adjusted
according to the historical best position for the particle itself and the neighborhood
best position. Both the particle best and the neighborhood best are derived according
to a user defined fitness function. The movement of each particle naturally evolves
to an optimal or near-optimal solution. In PSO algorithm, each individual possible
solution can be modeled as a particle that moves through the problem hyperspace.
The position of each particle is determined by the vector xi ∈ Rn and its movement
by the velocity of the particle vi ∈ Rn, as shown in (3.5)

xi(t) = xi(t− 1) + vi(t), (3.5)

The information available for each individual is based on its own experience (the
decisions that it has made so far and the success of each decision) and the knowledge
of the performance of other individuals in its neighborhood. Since the relative impor-
tance of these two factors can vary from one decision to another, it is reasonable to
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apply random weights to each part, and therefore the velocity will be determined by

vi(t) = wvi(t− 1) + c1d1(pi − xi(t− 1)) + c2d2(pg − xi(t− 1)), (3.6)

where w ∈ [0, 1) is an inertia weight specifying how much of the particle’s previous
velocity is preserved, c1, c2 are two positive numbers and d1, d2 are two random num-
bers with uniform distribution in the range of [0, 1], pi is the ith particle best position
so far; and pg is the best position found by the entire search space so far.

3.3. GRSA. In 2015, Beiranvand and Rokrok intruduced General Relativity Search
Algorithm (GRSA) [3]. This is a new meta-heuristic optimization algorithm. GRSA
inspired by General Relativity Theory. In GRSA, a population of particles (solution
agents) is considered in a space free from all external non-gravitational fields and
propel toward a position with least action. Step length and step direction for updating
the agents are separately computed using particles velocity and geodesics, respectively.
By inspiring these notions of General Relativity Theory, GRSA will evolve variables
of an optimization problem toward the global optimal point. For detailed discussion
of this algorithm see [3].

4. Result Analysis

In this section, we want to implement the above mentioned optimization algorithms
to estimate β and δ jointly. To minimize the problem (3.3), we need to choose the
penalty parameter and the upper and the lower bound for x and y. Assume that these
values have been chosen as in the table 1. Thus we have the following minimization

Table 1. Parameter values

Name x0 x1 y0 y1 C
Value −10 10 10−4 10 105

problem

Min l2(x, y) = ln y +
x− 2

2N

N−1∑
n=0

xn +
1

2N

N−1∑
n=0

z2n

ye
x−2
2 xn

S.to :

g1(x, y) = −x− 10 ≤ 0,

g2(x, y) = x− 10 ≤ 0,

g3(x, y) = −y + 10−4 ≤ 0,

g4(x, y) = y − 10 ≤ 0. (4.1)

Using penalty function yields

Min F (x, y) = l2(x, y) + 105p(x, y)

S.to :

x, y ∈ R, (4.2)
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where p(x, y) =
∑4

j=1 φ(gj(x, y)). For the share price of telecommunication company

of Iran (TCI) from the 10th of August 2008 to the 17th of Jun 2015, we want to
estimate β and δ. To evaluate the above objective function, we need to compute the
natural logarithm of the share price and take the first difference of the logarithms to
form zn, the mean µ(Xn) is estimated using Lowess filter non parameterically.

First of all Nelder-Mead (NM) algorithm is implemented. To do this, we should
pick some initial points. The results of the simulation of the problem (4.2) by Nelder-
Mead algorithm are shown in the Table 2.

Table 2. Numerical results related to the NM algorithm

xi Initial points Optimal solutions Objective function value Elapsed time
1 (-10,4) (0.7731,1.4890) -3.8994 0.358403
2 (-4,-3) (0.7732,1.4888) -3.8994 0.904574
3 (-1,9) (0.7730,1.4897) -3.8994 0.355850
4 (3,5) (0.7730,1.4895) -3.8994 0.318242
5 (6,-8) (0.7732,1.4885) -3.8994 0.399244

In the Table 2, the optimal solutions show the estimated values of β and δ respec-
tively. The fourth column represents the minimum values of the objective function
corresponding to the estimated values of β and δ. The fifth column shows the related
elapsed times.

In another simulation, we apply the PSO algorithm. In this method, we need to
determine the parameters of the algorithm which are the number of initial population
or swarm M , the constants c1, c2 and the number of iteration Num−Itr. Suppose
that these parameters are given in the Table 3. Running the PSO, we get the optimal

Table 3. PSO parameters

Name M w c1 c2 Num−Itr
Value 100 0.8 2 2 100

solution (0.7732, 1.4885), the optimal value of the objective function −3.8994 and the
elapsed time 17.666011 seconds for this algorithm. The graph of the evaluation of the
objective function per iteration is given in the Figure 1. Now we want to implement

Table 4. GRSA parameters

Name M gmax gmin Num−Itr
Value 100 0.999 0.011 100

GRSA. Assume that the GRSA’s parameters and their values are given in the table
4, where gmax and gmin are geometry coefficients of spacetime with gmax + gmin = 1,
gmax, gmin ∈ [Gmin, Gmax], in which Gmax = 1, Gmin = 0 are maximum and minimum
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Figure 1. Convergence curve of PSO

limits of geometry coefficient, respectively, andM , Num−Itr are the number of initial
populations or particles and maximum iteration respectively.

By running this algorithm, one can obtain the optimal solution (0.7732, 1.4888),
the optimal value of the objective function −3.8994 and the elapsed time 17.6495
for GRSA algorithm. Also the graph of the evaluation of the objective function per
iteration is given in the Figure 2.
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Figure 2. Convergence curve of GRSA

Now we want to test the estimation strategy used in this paper. In estimating β
and δ jointly, we assumed that the relation

Zn√
δ2Sβ−2

∼ N (0, 1), (4.3)

holds at least approximately, whereN is unit normal probability distribution. Assume
that, using the results of the above optimization problem, the estimated values are
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β̂ = 0.7732 and δ̂ = 1.4888. Let us consider

En =
Zn√
δ̂2Sβ̂−2

n

. (4.4)

These values will be compared graphically to a unit normal probability density func-
tion. If the two distributions are close, the estimation strategy will be good. In the
Figure 3, the histogram of En is shown along with the graph of the unit normal den-
sity function. As it is clear they are close to each other and this proves the reliability
of the method used in this paper.
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Figure 3. En and unit normal

It is seen, by the result of simulations, that β̂ < 1 which is in agreement with
theoretical predict given in introduction. This fact proves that the share price of TCI
has the inverse relationship with volatility.

To show the ease of access to the global optimal point of the proposed estima-
tion formulation, three different optimization algorithms are tested. First of all,
Nelder-Mead algorithm is applied which is a simple search algorithm and traps in
local optimal points easily. Thereafter, PSO and GRSA are applied which are global
search methods and find global optimal point or near-global optimal point of an op-
timization problem. Results of this comparative study show that even simple and
conventional optimization algorithm like Nelder-Mead method solves the proposed
estimation formulation satisfactorily and finds its global solution effectively.

5. Conclusion

In this paper, we considered a stochastic differential equation called constant elas-
ticity of variance. The aim was to estimate the parameters of constant elasticity of
variance as the model of share price using the time series data of telecommunica-
tion company of Iran. For this purpose, the density function of constant elasticity
of variance was approximated by density function of the normal distribution. Using
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maximum likelihood function, we formulated the parameter estimation problem as an
optimization problem. Finally, the optimal parameters have been obtained by solving
the optimization problem using three minimization algorithms such as Nelder-Mead,

PSO and GRSA. The results of simulations showed that the estimated elasticity β̂ < 1.
This fact confirms that the share price of TCI has inverse relationship with volatility
as theoretical results predict. As a direction for future research, one can consider
the stochastic differential equation with stochastic volatility and jump to fit the time
series data of share price.
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