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Abstract This paper deals with the numerical treatment of singularly perturbed parabolic
reaction-diffusion initial boundary value problems. Introducing a fitting parameter

into the asymptotic solution and applying average finite difference approximation, a

fitted operator finite difference method is developed for solving the problem. To ac-
celerate the rate of convergence of the method, Richardson extrapolation technique is

applied. The consistency and stability of the proposed method have been established

very well to ensure the convergence of the method. Numerical experimentation is
carried out on some model problems and both the results are presented in tables and

graphs. The numerical results are compared with findings of some methods existing

in the literature and found to be more accurate. Generally, the formulated method
is consistent, stable, and more accurate than some methods existing in the literature

for solving singularly perturbed parabolic reaction-diffusion initial boundary value
problems.
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1. Introduction

The mathematical model of most problems in science regarding the rates of change
concerning two or more independent variables, usually time and length leads to partial
differential equations. The quantities of attention in many areas of applied mathe-
matics are often to be found as the solution of certain partial differential equations
together with prescribed boundary and/or initial conditions. For instance, several
problems emerging from real-life phenomena such as systems of differential equations
and partial differential equations have been thoroughly discussed and novel numerical
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methods has been well develoed in this regard. The details of such developments are
presented in [5, 8, 12, 13, 14, 15, 16, 17, 27] and references there in. Basic problems
related to fractional differential equations are further treated in [1, 2, 3, 4]. Parabolic
partial differential equations arise in various branches of science and engineering,
such as fluid dynamics, heat flow, diffusion, elastic vibrations etc. These equations
are subject to the initial and boundary conditions often occur owing to the nature
of certain physical phenomena such as small viscosity in the Navier stokes equations,
modeling and analysis of heat and mass transfer process in the thermal conductivity
when diffusion coefficients are small and the rate of reaction is large, one can refer
[11, 23, 26].

Boundary layers happen in the solution of singularly perturbed problems when the
singular perturbation parameter multiplies the terms involving the highest derivatives
in the differential equation tends to zero. These boundary layers are the neighborhood
of the boundary of the domain, where the solution has a very steep gradient [22]. If
one attempts to solve singularly perturbed parabolic initial boundary value problems
(IBVPs) using standard numerical methods, then inaccurate solutions are obtained
unless the mesh discretization used is extremely fine. Even in this context, careful
numerical experiments show that the classical computational methods fail to decrease
the maximum point-wise error as the mesh is refined; until the mesh size and the
perturbation parameter have the same order of magnitude. Subsequently, the size
of the system of algebraic equations will be growing more as the dimension of the
problem increases. Hence, this results in the huge computational cost. This drawback
motivates the researcher to develop and analyze different numerical methods.

More recently, Gupta et al. [10] have established a parameter-uniform numerical
method to solve singularly perturbed parabolic problems with two parameters. These
authors developed and analyzed the method using asymptotic behavior of the solution
and a decomposition of solution into its regular and singular parts. To approximate
the solution, they considered the implicit Euler method for time stepping on a uniform
mesh and a special hybrid monotone difference operator for spatial discretization on
a specially designed piecewise uniform Shishkin mesh. They improved the order of
convergence using the Richardson extrapolation technique used in a temporal variable
only and the resulting scheme was proved to be uniformly convergent of order two in
both the spatial and temporal variables.

As a result, in the past few decades, various uniformly convergent numerical
schemes are proposed in the literature for singular perturbation problems (SPPs).
The numerical methods for SPPs are broadly classified into fitted operators and fit-
ted mesh methods. In fitted operator methods, exponential fitting factors or artificial
viscosity will be used to control the rapid growth or decay of the numerical solution
in the boundary layer regions, [18, 19, 21]. While, fitted mesh methods use nonuni-
form meshes, which will be dense in the boundary layer regions and coarse outside
the layer regions. For the reason that small values of the perturbation parameter,
the boundary layer may appear to give rise to difficulties when classical methods are
applied on a uniform mesh. Moreover, the error in the approximate solution depends
on the variable perturbation parameter. An adapted placement of the nodes or ar-
tificial viscosity is needed to ensure that the error is independent of the parameter
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value and depends only on the number of nodes in the mesh. The discretization with
this property is stated as a uniformly convergent numerical method. Here, both fit-
ted operators and fitted mesh methods help to get uniformly convergent numerical
methods.

From too many methods had been constructed to find the numerical solution of
singularly perturbed parabolic IBVPs, few of the recent works are; parameter uniform
numerical method [18], higher-order uniformly convergent method with Richardson
extrapolation in time [9, 10]; A fitted numerical method [24], numerical approxima-
tion and an iterative technique [20, 25] respectively. From these developed numerical
methods, we observe that a large amount of work has been done on singularly per-
turbed parabolic reaction-diffusion IBVPs as far as designing and analyzing numerical
methods for their integration is concerned. In these works, fitted mesh finite difference
methods have been adopted, but the obtained numerical solution yet not satisfactory
with regards to the order of convergence. Hence, it is necessary to develop stable and
convergent methods that produce a more accurate numerical solution with a higher
order of convergence to solve singularly perturbed parabolic reaction-diffusion IBVPs.
Thus, in this work, we formulate, analyze and implement accelerated fitted operator
finite difference methods to solve singularly perturbed parabolic IBVPs and provide
its new substantial contribution as the proposed scheme produce a more accurate
solution.

2. Formulation of the method

We consider the singularly perturbed parabolic reaction-diffusion IBVP(
ε
∂2u

∂x2
− bu− ∂u

∂t

)
(x, t) = f(x, t),∀(x, t) ∈ D := (0, 1)× (0, 1]. (2.1)

subject to the initial and boundary conditions{
u(x, 0) = s(x),∀x ∈ Ω̄ := [0, 1].

u(0, t) = q0(t), u(1, t) = q1(t),∀t ∈ [0, 1],
(2.2)

where ε is perturbation parameter that satisfies 0 < ε << 1 and assume that the
coefficient function b(x, t) ≥ β > 0 is sufficiently smooth. Under sufficient smoothness
and compatibility conditions imposed on the functions s(x), q0(t), q1(t) and f(x, t),
the initial-boundary value problem admits a unique solution u(x, t) which exhibits
twin boundary layer of width O(

√
ε) neighboring the boundaries x = 0 and x = 1.

To formulate the method, let us take the singularly perturbed homogeneous differ-
ential equation:

ε
d2u

dx2
− βu = 0, (2.3)

subject to the boundary conditions u(0) = q0(t), u(1) = q1(t) and its solution for
constant C is

u(x) = Cexp(

√
β

ε
x). (2.4)
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For ordinary differential equation case, representing the approximate solution u(x) at
the gird point xm by um with the mesh size h = 1

M , we have

xm = mh,m = 0, 1, ...,M ;

for M been positive integer. The central finite difference approximation for (2.3) is

ε

h2
(um+1 − 2um + um−1)− βum = 0. (2.5)

Introducing the fitting parameter σ on (2.5), denoting ρ = h√
ε

and evaluating limits on

both sides of (2.5) yields σ
ρ2 =

β lim
h→0

um

lim
h→0

(um+1−2um+um−1) and considering (2.4) on discreet

domain of Ω̄, then we get the value of fitting parameter σ = βρ2

exp(
√
βρ)+exp(−

√
βρ)−2

which is equal to

σ =
βρ2

4

(
csch(

√
βρ

4
)

)2

. (2.6)

Let N be a positive integer when working on D̄, we custom a rectangular grid Dk
h

whose nodes are (xm, tn) for 0 = x0 < x1 < ... < xM = 1, 0 = t0 < t1 < ... < xN =
1, xm = mh,m = 1

M ,m = 0, 1, ...,M, tn = nk, k = 1
N , n = 0, 1, ..., N . Consequently,

let denote the approximate solution unm ' u(xm, tn)at an arbitrary point (xm, tn). To
obtain a finite difference scheme, we need to approximate the derivatives in (2.1) after
introducing the fitting parameter in the finite difference approximations. Assume that
(2.1) is satisfied at (m,n+ 1

2 )th - level and with the introduced fitted parameter, which
is written as

εσ
∂2u

n+ 1
2

m

∂x2
− bn+ 1

2
m u

n+ 1
2

m − ∂u
n+ 1

2
m

∂t
= f

n+ 1
2

m . (2.7)

For the derivatives concerning t, Taylor series expansion yields:

un+1
m = u

n+ 1
2

m +
k

2

∂u
n+ 1

2
m

∂t
+
k2

8

∂2u
n+ 1

2
m

∂t2
+
k3

48

∂3u
n+ 1

2
m

∂t3
+O(k4). (2.8)

unm = u
n+ 1

2
m − k

2

∂u
n+ 1

2
m

∂t
+
k2

8

∂2u
n+ 1

2
m

∂t2
− k3

48

∂3u
n+ 1

2
m

∂t3
+O(k4). (2.9)

Subtracting (2.9) from (2.8), gives the central difference approximation in such a point
as

∂u
n+ 1

2
m

∂t
=
un+1
m − unm

k
+ τ1, (2.10)

where the truncation term τ1 = −k
2

24
∂3u

n+1
2

m

∂t3 .

Considering all terms of (2.7) except ∂u
n+1

2
m

∂t at the average of nth and n + 1st time
level, we have

εσ
∂2u

n+ 1
2

m

∂x2
− bn+ 1

2
m u

n+ 1
2

m − fn+ 1
2

m =
LNx

(
un+1
m + unm

)
2

. (2.11)
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where LNx u
n
m = εσ

un
m+1−2un

m+un
m−1

h2 − bnmunm − fnm + τ2; for τ2 = − εσh
2

12
∂4un

m

∂x4 ,
Substituting both (2.10) and (2.11) into (2.7) gives:

εσ
un+1
m+1 − 2un+1

m + un+1
m−1

h2
− bn+1

m un+1
m + εσ

unm+1 − 2unm + unm−1

h2

− bnmunm −
2

k

(
un+1
m − unm

)
= fn+1

m + fnm + τ3,

(2.12)

where τ3 = −2τ1 − τ2.

This can be re-written as three term recurrence relation

En+1
m un+1

m+1 − Fn+1
m un+1

m +Gn+1
m un+1

m−1 = Hn+1
m , (2.13)

where En+1
m = εσ

h2 = Gn+1
m , Fn+1

m = 2 εσh2 + 2
k + bn+1

m ,

Hn+1
m = fn+1

m + fnm −
εσ

h2

(
unm+1u

n
m−1

)
+

(
2
εσ

h2
+ bnm −

2

k

)
unm.

Here, equation (2.13) is the tridiagonal system of equations concerning the x−direction
and the coefficients En+1

m , Fn+1
m , Gn+1

m and the right-hand side Hn+1
m are given that

they satisfy the conditions |En+1
m | > 0, |Fn+1

m | > 0, |Gn+1
m | > 0 with |Fn+1

m | >
|En+1
m | + |Gn+1

m | at each (n + 1)th level. These situations guarantee that the sys-
tem is diagonally dominant. Thus, (2.13) can be solved by Thomas algorithm and
stable.

3. Richardson Extrapolation

This technique is a convergence acceleration technique that involves a combination
of two computed approximations of a solution. The combination goes out to be a
better approximation. Truncation error of the schemes given in (2.10) - (2.12) is
τ3 = −2τ1 − τ2 ≡ O(h2 + k2).
As h and k closer and closer to zero, the truncation term is also become zero. This
implies that the developed numerical method in (2.13) is consistent. Hence, we have

|u(xm, tn+1)− Un+1
m | ≤ C(h2 + k2), (3.1)

where u(xm, tn+1) and Un+1
m are exact and approximate solutions respectively, C is

constant free from mesh sizes h and k.
Let D2N

2M be the mesh found by dividing each mesh interval DN
M into two and

symbolize the calculation of the solution on D2N
2M by Ūn+1

m . Equation (3.1) works for
any h, k 6= 0, which implies:

u(xm, tn+1)− Un+1
m ≤ C(h2 + k2) +RNM ,∀(xm, tn+1) ∈ DN

M . (3.2)

So that, it works for any h
2 ,

k
2 6= 0 yields:

u(xm, tn+1)− Ūn+1
m ≤ C(

h

4

2

+
k2

4
) +R2N

2M ,∀(xm, tn+1) ∈ D2N
2M , (3.3)

where the remainders, RNM and R2N
2M are convergent of fourt-order or O(h4+k4). Com-

bination of inequalities in (3.2) and (3.3) leads to 3u(xm, tn+1)−
(
4Ūn+1

m − Un+1
m

)
≡
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O(h4 + k4) . Hence, we have(
Un+1
m

)ext
=

1

3

(
4Ūn+1

m − Un+1
m

)
. (3.4)

By means of this approximation to estimate the truncation error, we obtain

|u(xm, tn+1)−
(
Un+1
m

)ext | ≤ C(h4 + k4), (3.5)

where C is free of mesh sizes h and k. Thus, the obtained accelerated fitted operator
method is to convergent of fourth-order.

4. Stability and Consistency of the method

The analysis of the proposed method is easily accomplished by the use of Fourier
analysis. As authors of the books in [28, 29] provided detail reasons, the Von Neumann
stability method is applied to investigate the stability of the developed scheme in
(2.13), by assuming that its solution, at the grid point (xm, tn+1) is given by

Unm = ξnexp(imθ), (4.1)

where i =
√
−1, θ is the real number and ξ is the amplitude factor.

Now, putting (4.1) into the homogeneous part of (2.13) yields the amplitude factor,

ξ =
−εσ (exp(iθ) + exp(−iθ)− 2) + h2bnm
εσ (exp(iθ) + exp(−iθ)− 2)− h2bn+1

m

.

For sufficiently small h, the condition of stability is |ξ| ≤ 1 that can be satisfied,

| − εσ (exp(iθ) + exp(−iθ)− 2) | ≤ |εσ (exp(iθ) + exp(−iθ)− 2) |.
Therefore, |ξ| ≤ 1 . Hence, the scheme given in (2.13) is stable and, we can say the
formulated scheme is unconditionally stable.

To investigate the consistency of the method, we have considered both (3.1) and
(3.5), then truncation terms vanishes as h → 0 and k → 0. Hence, the scheme is
consistent with the order of O(h2 + k2) before Richardson extrapolation and order of
O(h4 + k4) after Richardson extrapolation respectively. Therefore, the constructed
scheme is convergent by Laxs equivalence theorem, [6, 7, 28, 29].

5. Numerical Results and Discussion

In this section, we provide numerical examples and results for problems of type (2.1)
and (2.2) to validate the applicability of the schemes in Eq. (13) before extrapolation
and after extrapolation by (3.4)as follow:

Example 5.1. Consider the singularly perturbed parabolic IBVP

ε
∂2u

∂x2
− (1 + xexp(−t))u(x, t)− ∂u

∂t
= f(x, t),∀(x, t) ∈ (0, 1)× (0, 1],

subject to the conditions u(x, 0) = 0,∀x ∈ [0, 1], u(0, t) = u(1, t) = 0,∀t ∈ [0, 1].
Where the source function f(x, t) is occupied such that the exact solution is

u(x, t) = (1− exp(−t))

(
exp(− x√

ε
) + exp(− 1−x√

ε
)

1 + exp(− 1√
ε
)

− (cosπx)2

)
.
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For this example, the maximum absolute error evaluated before and after Richard-
son extrapolation respectively by

EM,N
ε = max

(xm,tn+1)∈D̄N
M

|u(xm, tn+1)− un+1
m |

and

EM,N
ε = max

(xm,tn+1)∈D̄N
M

|u(xm, tn+1)− (Un+1
m )ext|,

where u(xm, tn+1) is an exact solution, un+1
m is approximated solution before extrapo-

lation and (Un+1
m )ext is also an approximated solution after Richardson extrapolation.

The corresponding order of convergence is determined by

PM,N
ε =

logEM,N
ε − logE2M,2N

ε

log2
.

The numerical results are given below in Tables 1 - 4 and Figures 1 and 2.

Table 1. Maximum absolute errors for Example 5.1 at the number
of interval M = N .

ε ↓ N → 16 32 64 128 256
After
2−5 2.9109e-06 2.1164e-07 1.3395e-08 8.4080e-10 4.5679e-11
2−6 6.6145e-06 4.1973e-07 2.6385e-08 1.6535e-09 1.0346e-10
2−7 1.2425e-05 8.5139e-07 5.3716e-08 3.3727e-09 2.1095e-10
2−8 2.4780e-05 1.6801e-06 1.0710e-07 6.7530e-09 4.2260e-10
2−9 4.4030e-05 3.1975e-06 2.1164e-07 1.3395e-08 8.4080e-10

Before
2−5 2.5652e-03 6.4322e-04 1.6092e-04 4.0238e-05 1.0060e-05
2−6 2.1268e-03 5.3666e-04 1.3448e-04 3.3639e-05 8.4110e-06
2−7 1.8440e-03 4.7001e-04 1.1807e-04 2.9555e-05 7.3917e-06
2−8 1.6579e-03 4.3054e-04 1.0867e-04 2.7234e-05 6.8138e-06
2−9 1.5084e-03 4.0599e-04 1.0343e-04 2.5982e-05 6.5044e-06

Example 5.2. Consider the singularly perturbed parabolic IBVP

ε
∂2u

∂x2
− b(x, t)u(x, t)− ∂u

∂t
= f(x, t),∀(x, t) ∈ (0, 1)× (0, 1]

for b(x, t) = 1 + x2 + t2exp(t) and f(x, t) = exp(t) − 1 + sin(πx); subject to the
conditions

u(x, 0) = 0,∀x ∈ [0, 1], u(0, t) = u(1, t) = 0,∀t ∈ [0, 1].

For this example the exact solution is not accessible, so that its maximum absolute
error calculated by

EM,N
ε = max

(xm,tn+1)∈D̄N
M

|(U2n+1
2m )ext − (Un+1

m )ext|.
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Figure 1. Behavior of the numerical solution for Example 5.1 at
M = N = 64 and ε = 2−10.

Table 2. Rate of convergence of the numerical methods for Example 5.1.

ε ↓ N → 8 16 32 64 128
After Extrapolation

2−5 3.9200 3.7818 3.9818 3.9938 4.2022
2−6 3.9747 3.9781 3.9917 3.9961 3.9984
2−7 3.8639 3.8673 3.9864 3.9934 3.9989
2−8 3.5968 3.8826 3.9715 3.9873 3.9982
2−9 3.4276 3.7835 3.9173 3.9818 3.9938

Before Extrapolation
2−5 1.9816 1.9957 1.9990 1.9997 1.9999
2−6 1.9461 1.9866 1.9966 1.9992 1.9998
2−7 1.8897 1.9721 1.9930 1.9982 1.9994
2−8 1.7897 1.9451 1.9862 1.9965 1.9989
2−9 1.6125 1.8935 1.9728 1.9931 1.9980

Numerical results are given in Table 5 and Figures 3 and 4.

The results in Tables 1 - 2, depicts the effects of Richardson extrapolation technique
on the solution profile and observed that it produce more accurate numerical solutions
and a corresponding higher rate of convergence for singularly perturbed parabolic
reaction-diffusion IBVPs. Tables 4 and 5 reveals that the proposed method gives
a more accurate numerical solution than some existing methods in the literature.
Furthermore, to realize another contribution of the method, one can observe results
presented in Table 3. Figures 1 and 3 indicates the physical behavior of numerical
solutions for Examples 5.1 and 5.2 which have twin boundary layers at each end of the
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Figure 2. Log-log plot of maximum point-wise error of the solution
for Example 5.1 (using results in Table 1).

space domain. The numerical solutions obtained by the present method have been log-
log plotted in Figures 2 and 4 to indicate that the maximum absolute errors decrease
as the number of mesh points increases and maximum absolute errors increase as
perturbation parameters decreases.

Table 3. Maximum absolute errors obtained with introduced with
fitting parameter (W.f.f) and without fitting parameter(W.O.f.f) for
Example 5.1 at the number of intervals M = N .

ε ↓ N → 16 32 64 128 256

W.f.f
10−2 9.8018e-06 6.6348e-07 4.1741e-08 2.6219e-09 1.6398e-10
10−4 1.9485e-04 3.3309e-05 3.2604e-06 2.4053e-07 1.6035e-08
10−6 4.8623e-06 5.0916e-06 5.0085e-06 3.0287e-06 6.6473e-07

W.O.f.f
10−2 2.8316e-05 1.9013e-06 1.2102e-07 7.5984e-09 4.7551e-10
10−4 8.1658e-04 1.2081e-04 3.9369e-04 6.8959e-05 4.8197e-06
10−6 2.2210e-05 8.7943e-05 3.2929e-04 8.1702e-04 2.9043e-04

6. Conclusion

The main purpose of this work is to design and investigate accelerated fitted opera-
tor finite difference method to solve singularly perturbed parabolic reaction-diffusion
initial boundary value problems whose solution exhibits twin boundary layers. By
taking the homogeneous ordinary differential equation part of the governing problem
and introducing a fitting parameter on the central finite difference approximation, we
obtained fitted operator finite difference which in turn gives two-level time direction
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Table 4. Comparison of maximum absolute errors for Example 5.1.

ε ↓ M=128 M=256 M=512 M=1024
N=4 N=8 N=16 N=32

Present Method
2−2 1.3043e-05 9.4533e-07 6.0175e-08 3.9740e-09
2−6 5.8129e-06 3.3566e-07 1.9870e-08 1.2328e-09
2−10 6.3666e-06 3.9622e-07 2.4571e-08 1.5340e-09
2−14 8.5693e-06 5.9224e-07 3.7924e-08 2.3874e-09
2−18 6.6480e-06 1.8974e-06 4.0403e-07 2.8810e-08

Results in [10]
2−2 0.956e03 0.382e03 0.131e03 0.401e04
2−6 0.116e02 0.392e03 0.118e03 0.332e04
2−10 0.236e02 0.709e03 0.206e03 0.559e04
2−14 0.268e02 0.794e03 0.231e03 0.626e04
2−18 0.273e02 0.809e03 0.235e03 0.639e04

Table 5. :Maximum absolute errors for Example 5.2 and its com-
parison .

ε ↓ M=128 M=256 M=512 M=1024
N=4 N=8 N=16 N=32

Present Method
2−4 3.9138e-04 9.5343e-05 2.3353e-05 5.8317e-06
2−8 6.5366e-04 1.6276e-04 4.0499e-05 1.0111e-05
2−12 6.6576e-04 1.6709e-04 4.1915e-05 1.0552e-05
2−16 6.6691e-04 3.1446e-04 2.7007e-04 9.6167e-05

Results in [10]
2−4 0.347e02 0.122e02 0.373e03 0.105e03
2−8 0.433e02 0.143e02 0.420e03 0.114e03
2−12 0.440e02 0.145e02 0.423e03 0.115e03
2−16 0.440e02 0.145e02 0.423e03 0.115e03

and three-term recurrence relations in spatial derivatives that can easily be solved by
Thomas algorithm. Then, applying the Richardson extrapolation on the method, we
obtain accelerated version of the scheme. Consistency and stability of the proposed
method have been established very well and guaranteed that our method is of fourth
order convergent. It is evident from the tabular results that the proposed method
gives more accurate numerical solution than some others. The results of numerical
simulation further confims that the numerical solution obtained is in agreement with
the theoretical results that the solution of the problem has twin boundary layers (Fig-
ures 1 and 3). In a concise manner, the developed method is consistent, stable and
more accurate than some existing methods for solving singularly perturbed parabolic
initial boundary value problems.
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Figure 3. Behavior of the numerical solution for Example 5.2 at
M = N = 64 and ε = 10−4.
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Figure 4. Log-log plot of maximum point-wise error of the solution
for Example 5.2.
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