تعداد نشریات | 44 |
تعداد شمارهها | 1,302 |
تعداد مقالات | 16,019 |
تعداد مشاهده مقاله | 52,485,297 |
تعداد دریافت فایل اصل مقاله | 15,212,968 |
Extending a new two-grid waveform relaxation on a spatial finite element discretization | ||
Computational Methods for Differential Equations | ||
مقاله 15، دوره 9، شماره 4، دی 2021، صفحه 1148-1162 اصل مقاله (177.74 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2020.37349.1653 | ||
نویسندگان | ||
Noora Habibi* ؛ Ali Mesforush | ||
Faculty of Applied Mathematics, Shahrood University Of Technology, P.O. Box 3619995161 Shahrood, Iran. | ||
چکیده | ||
In this work, a new two-grid method presented for the elliptic partial differential equations is generalized to the time-dependent linear parabolic partial differential equations. The new two-grid waveform relaxation method uses the numerical method of lines, replacing any spatial derivative by a discrete formula, obtained here by the finite element method. A convergence analysis in terms of the spectral radius of the corresponding two-grid waveform relaxation operator is also developed. Moreover, the efficiency of the presented method and its analysis are tested, applying the twodimensional heat equation. | ||
کلیدواژهها | ||
Waveform relaxation method؛ Finite element method؛ Multigrid acceleration | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 475 تعداد دریافت فایل اصل مقاله: 405 |