- [1] M. S. Aabdeh, J. Habibi, and E. Soroush, Induction of fuzzy classification systems via evolutionaryaco-basedalgorithms, International Journal of Simulation Systems, Science and Technology, 9 (2008), 1-8.
- [2] T. Allahviranloo, M. Keshavarz, and Sh. Islam, The prediction of cardiovascular disorders by fuzzy difference equations, IEEE International Conference on Fuzzy Systems, (2016), , 1465- 1472.
- [3] HM. Azamathulla, CK. Chang, A. Ab Ghani, J. Ariffin, NA. Zakaria, and Z. Abu Hasan, An ANFIS-based approach for predicting the bed load for moderately sized rivers. J Hydro-environ Res, 3 (2009), 35-44.
- [4] B. Bede, Mathematics of fuzzy sets and fuzzy logic, Springer, London, (2013).
- [5] B. Bede, Note on Numerical solutions of fuzzy differential equations by predictor corrector method, Information Sciences, 178 (2008), 1917-1922.
- [6] B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141.
- [7] T. Bekat, M. Erdogan, F. Inal, and A. Genc. Prediction of the bottom ash formed in a coal-fired power plant using artificial neural networks, 45 (2012), 882-887.
- [8] J. J. Buckley and Y. Qu, Solving fuzzy equations: a new concept, Fuzzy Sets and Systems, 39 (1991), 291-301.
- [9] D. Burkhoff, I. Mirsky, and H. Suga, Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol, 289 (2005), H501-H512.
- [10] M. Friedman, M. Ma, and A. Kandel, Numerical solutions of fuzzy differential and integral equations, in: Fuzzy Modeling and Dynamics, Fuzzy Sets Syst, 106 (1999), 3548.
- [11] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 24 (1987), 3143.
- [12] Y. C. Hu, Sugeno fuzzy integral for finding fuzzy if-then classification rules, Applied Mathe- matics and Computation, 185 (2007), 72-83.
- [13] M. Hukuhara, Integration des applications measurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj, 10 (1967), 205-223.
- [14] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229.
- [15] A. Kaufmann and M. M. Gupta, Introduction Fuzzy Arithmetic, Van Nostrand Reinhold, New York, (1985).
- [16] M. Keshavarz, T. Allahviranloo, S. Abbasbandy, and M. H. Modarressi, A Study of Fuzzy Methods for Solving System of Fuzzy Differential Equations, New Mathematics and Natural Computation, 2020, In Press.
- [17] B. Khoshnevisan, Sh. Rafiee, M. Omid, and H. Mousazadeh, Development of an intelligent sys- tem based on ANFIS for predicting wheat grain yield on the basis of energy inputs, Information processing in agriculture, 1 (2014), 14-22.
- [18] V. Lakshmikantham, T. Bhaskar, and J. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, (2006).
- [19] J. W. Lankhaar, F. A. Rovekamp, P. Steendijk, T. J. C. Faes, B. E. Westerhof, T. Kind, A. Vonk noordegraaf, and N. Westerhof, Modeling the instantaneous pressure-volume relation of the left ventricle: A comparison of six models, Annals of Biomedical Engineering, 37 (2009), 1710-1726.
- [20] A. Lekova, L. Mikhailov, D. Boyadjiev, and A. Nabout, Redundant fuzzy rules exclusion by genetic algorithms, Fuzzy Sets and Systems, 100 (1998), 235-243.
- [21] Math Works, Fuzzy logic toolbox user’s guide, Natick. Inc, 3 (2012), 137-179.
- [22] E. G. Mansoori, M. J. Zolghadri, and S. D. Katebi, Using distribution of data to enhance performance of fuzzy classification systems, Iranian Journal of Fuzzy Systems, 4 (2007), 21-36.
- [23] E. G. Mansoori, M. J. Zolghadri, and S. D. Katebi, Aweighting function for improving fuzzy classification systems performance, Fuzzy Sets and Systems, 158 ( 2007), 583-591.
- [24] R. A. Mohammadpour, S. Mohammad Abedi, S. Bagheri, and A. Ghaemian, Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease, Hindawi Publishing Corporation, Computational and Mathematical Methods in Medicine, 2015 ( 2015), 1-8.
- [25] J. T. Ottesen, M. S. Olufsen, and J. K. Larsen, Applied mathematical models in human physi- ology, Society for Industrial and Applied Mathematics Philadelphia, (1959).
- [26] D. Petkovic, N. Pavlovi, Sh. Shamshirband, M. L. Kiah, N. B. Anuar, and M. Y. Idna Idris, Adaptive neuro-fuzzy estimation of optimal lens system parameters, Opt Lasers Eng, 55 (2014), 84-93.
- [27] E. Rezaei, A. Karami, T. Yousefi and S. Mahmoudinezhac, Modeling the free convection heat transfer in a partitioned cavity using ANFIS, Int Commun Heat Mass Transfer, 39 (2012), 470-475.
- [28] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arith- metic, Fuzzy Sets System, 161 (2010), 1564-1584.
- [29] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis, 71 (2009), 1311-1328.
- [30] Z. Yang, Y. Liu, and C. Li, Interpolation of missing wind data based on ANFIS, Renewable Energy, 36 (2011), 993-998.
- [31] L. A. Zadeh, Information and Computation, Fuzzy sets, 8 (1965), 338-353.
- [32] Z. Zhao, TL. Chow, HW. Rees, Q. Yang, Z. Xing, and FR. Meng,Predict soil texture distributions using an artificial neural network model, Comput Electron Agric, 65 (2009), 36-48.
- [33] H. J. Zimmermann, Fuzzy Sets Theory and Applications, Kluwer, Dorrecht, (1985).
|