
Computational Methods for Differential Equations

http://cmde.tabrizu.ac.ir

Vol. 2, No. 1, 2014, pp. 11-18

Exact travelling wave solutions for some complex nonlinear partial
differential equations

N. Taghizadeh
Department of Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 1914, Rasht,
Iran
E-mail: taghizadeh@guilan.ac.ir

M. Mirzazadeh
Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of
Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran
E-mail: mirzazadehs2@guilan.ac.ir

M. Eslami

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
E-mail: mostafa.eslami@umz.ac.ir

M. Moradi
Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of
Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran
E-mail: mmoradi@guilan.ac.ir

Abstract This paper reflects the implementation of a reliable technique which is called
(

G
′

G

)

-

expansion method for constructing exact travelling wave solutions of nonlinear par-
tial differential equations. The proposed algorithm has been successfully tested on
two two selected equations, the balance numbers of which are not positive integers
namely Kundu-Eckhaus equation and Derivative nonlinear Schrödingers equation.
This method is a powerful tool for searching exact travelling solutions in closed form
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1. Introduction

The study of nonlinear partial differential equations (NPDEs) is extremely impor-
tant in various branches of applied sciences [1-23]. These NPDEs form the fabric
of various physical phenomena in nonlinear optics, plasma physics, nuclear physics,
mathematical biology, fluid dynamics, and many other areas in physical and biological
sciences.
With the development of soliton theory, many useful methods for obtaining the ex-
act solutions of nonlinear partial differential equations have been presented, some of

them are: the
(

G′

G

)

-expansion method [1-8], the simplest equation method [9-11], the

solitary wave ansatz method [12-14], the first integral method [15-18], the functional
variable method [19-21] and so on.
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Recently, a new method has been proposed by Wang et al., [4] called the
(

G′

G

)

-

expansion method to study traveling wave solutions of nonlinear evolution equations.
This useful method is developed successfully by many authors [1-3, 5-8] and the refer-

ence therein. The
(

G′

G

)

-expansion method [4-8] is based on the assumptions that the

traveling wave solutions can be expressed by a polynomial in
(

G′

G

)

such thatG = G(ξ)

satisfies a second order linear ordinary differential equation (ODE). In this paper, we

describe the
(

G′

G

)

-expansion method [4-8] for finding traveling wave solutions of non-

linear partial differentiae equations and then subsequently it will be applied to solve
Kundu-Eckhaus equation and derivative nonlinear Schrödingers equation. The paper

is arranged as follows. In section 2, we describe briefly the G′

G
-expansion method. In

sections 3 and 4, we apply this method to Kundu-Eckhaus equation and derivative
nonlinear Schrödingers equation.

2. The G′

G
-expansion method

Consider a nonlinear evolution equation:

F (u, ut, ux, utt, uxx, uxt, ...) = 0, (2.1)

where F is a polynomial in u and its partial derivatives. In order to solve Eq. (2.1)

using the G′

G
-expansion method, we give the following main steps [5-8]:

Step 1. Using the wave transformation

u(x, t) = u(ξ), ξ = x− ct, (2.2)

from Eq. (2.1) and Eq. (2.2) we have the following ODE:

P (u, u′, u′′, ...) = 0, (2.3)

where P is a polynomial in u and its total derivatives and ′ = d
dξ
.

Step 2. We suppose that Eq. (2.3) has the formal solution:

u(ξ) =

N
∑

l=0

Al

(

G′(ξ)

G(ξ)

)l

, (2.4)

where Al are arbitrary constants to be determined such that AN 6= 0, while G = G(ξ)
satisfies the second order linear ordinary equation (LODE) in the following form

G′′ + λG′ + µG = 0, (2.5)

where λ and µ are constants to be determined later and the prime denotes the deriv-
ative with respect to ξ.

Step 3. We determine the positive integer N in Eq. (2.4) by balancing the highest
order derivatives and the nonlinear terms in Eq. (2.3).
Step 4. Substituting Eq. (2.4) into Eq. (2.3) with Eq. (2.5), then the left hand side

of Eq. (2.5) is converted into a polynomial in G′(ξ)
G(ξ) , equating each coefficient of the

polynomial to zero yields a set of algebraic equations for Al, µ, c, λ.

Step 5. Solving the algebraic equations obtained in step 4, and substituting the
results into Eq. (2.4), then we obtain the exact traveling wave solutions for Eq. (2.3).
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Remark . The second order LODE (2.5) has the following solutions:

When λ2 − 4µ > 0,

G′

G
= −λ

2
+

√

λ2 − 4µ

2









C1 cosh

(√
λ2−4µ

2 ξ

)

+ C2 sinh

(√
λ2−4µ

2 ξ

)

C1 sinh

(√
λ2−4µ

2 ξ

)

+ C2 cosh

(√
λ2−4µ

2 ξ

)









, (2.6)

When λ2 − 4µ < 0,

G′

G
= −λ

2
+

√

4µ− λ2

2









−C1 sin

(√
4µ−λ2

2 ξ

)

+ C2 cos

(√
4µ−λ2

2 ξ

)

C1 cos

(√
4µ−λ2

2 ξ

)

+ C2 sin

(√
4µ−λ2

2 ξ

)









, (2.7)

When λ2 − 4µ = 0,

G′

G
= −λ

2
+

C1

C1ξ + C2
, (2.8)

When µ = 0, λ 6= 0,

G′

G
= −λ

C2e
−λξ

C1 + C2e−λξ
, (2.9)

where C1 and C2 are arbitrary constants.

3. The Kundu-Eckhaus equation

Let us consider the Kundu-Eckhaus equation [22]

iQt +Qxx − 2σ|Q|2Q+ δ2|Q|4Q+ 2iδ
(

|Q|2
)

x
Q = 0. (3.1)

We may choose the following traveling wave transformation:

Q(x, t) = ei(αx+βt)u(ξ), ξ = ik (x− 2αt) , (3.2)

where k, α and β are constants to be determined later.
On substituting these into Eq. (3.1) yields

Qt = i (βu− 2kαu′) ei(αx+βt), (3.3)

Qxx = −
(

α2u+ 2kαu′ + k2u′′
)

ei(αx+βt), (3.4)

(

|Q|2
)

x
Q = 2iku2u′ei(αx+βt), (3.5)

Substituting Eqs. (3.3)-(3.5) into Eq. (3.1), we have

−(β + α2)u− k2u′′ − 2σu3 + δ2u5 − 4kδu2u′ = 0. (3.6)

When balancing u′′ with u5 then gives

N + 2 = 5N ⇒ N =
1

2
. (3.7)
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To obtain an analytic solution, N should be an integer. This requires the use of the
transformation

u(ξ) = (v(ξ))
1

2 , (3.8)

that transforms (3.6) to

−4(β + α2)v2 + k2(v′)2 − 2k2vv′′ − 8σv3 + 4δ2v4 − 8kδv2v′ = 0. (3.9)

Balancing vv′′ with v4 in (3.9) gives

2N + 2 = 4N, (3.10)

so that N = 1. Hence, we look for solutions to Eq. (3.9) in the form

v(ξ) = A0 +A1

(

G′

G

)

, A1 6= 0. (3.11)

By using Eq. (2.5), from Eq. (3.11) we have

v′(ξ) = −A1

(

G′

G

)2

−A1λ

(

G′

G

)

−A1µ, (3.12)

v′′(ξ) = 2A1

(

G′

G

)3

+ 3A1λ

(

G′

G

)2

+
(

2A1µ+A1λ
2
)

(

G′

G

)

+A1λµ. (3.13)

Substituting Eqs. (3.11)-(3.13) into Eq. (3.9), collecting the coefficients of (G
′

G
)l, (l =

0, 1, ..., 4) and set it to zero we obtain the system

−8σA3
0 + 4δ2A4

0 − 4(β + α2)A2
0 + k2µ2A2

1 − 2k2λµA0A1 + 8kδµA2
0A1 = 0,

16kδµA0A
2
1 + 8kδλA2

0A1 + 16δ2A3
0A1 − 2k2(λ2 − µ)A0A1 − 6k2µA0A1 − 24σA2

0A1 −
8(β + α2)A0A1 = 0,

8kδµA3
1+16kλδA0A

2
1+8kδA2

0A1+24δ2A2
0A

2
1−2k2(λ2−µ)A2

1−6k2µA2
1−6k2λA0A1−

24σA0A
2
1 + 2k2µA2

1 + k2λ2A2
1 − 4(β + α2)A2

1 = 0,

8kλδA3
1 + 16kδA0A

2
1 + 16δ2A0A

3
1 − 4k2λA2

1 − 4k2A0A1 − 8σA3
1 = 0,

4δ2A4
1 + 8kδA3

1 − 3k2A2
1 = 0. (3.14)

Solving this system by Maple gives

A0 = 0, A1 =

(

−2±
√
7

δ

)

(

k

2

)

, µ = 0, λ =

(

−2±
√
7

−3±
√
7

)

( σ

kδ

)

, (3.15)

β = −
(

24δ2α2 + 4σ2
) (

−2±
√
7
)

− 3σ2 − 16δ2α2

8δ2
(

−8± 3
√
7
) ,

where k and α are arbitrary constants.
By using Eq. (3.15), expression (3.11) can be written as

v(ξ) =
k
(

−2±
√
7
)

2δ

(

G′

G

)

, (3.16)
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From Eq. (2.9), Eq. (3.8) and Eq. (3.16), we obtain:

v(ξ) =
kλ
(

2∓
√
7
)

2δ

(

C2e
−λξ

C1 + C2e−λξ

)

, (3.17)

and

u(ξ) =

√

kλ
(

2∓
√
7
)

2δ

(

C2e
−λξ

C1 + C2e−λξ

)

1

2

. (3.18)

Thus, in (x, t)- variables we have the exact traveling wave solution of the Kundu-
Eckhaus equation as follows:

Q(x, t) =

√

kλ
(

2∓
√
7
)

2δ

(

C2e
−iλk(x−2αt)

C1 + C2e−iλk(x−2αt)

)

1

2

ei{αx−At} (3.19)

where

λ =

(

−2±
√
7

−3±
√
7

)

( σ

kδ

)

, A =

(

24δ2α2 + 4σ2
) (

−2±
√
7
)

− 3σ2 − 16δ2α2

8δ2
(

−8± 3
√
7
) .

If we choose C1 = C2 in Eq. (3.19 ), we obtain the exact solution of the Kundu-
Eckhaus equation as follows:

Q(x, t) =

√

kλ
(

2∓
√
7
)

2δ

(

1

2
− 1

2
tanh

(

ikλ

2
(x− 2αt)

))
1

2

ei{αx−At}

(3.20)

where

λ =

(

−2±
√
7

−3±
√
7

)

( σ

kδ

)

.

4. Derivative nonlinear Schrödingers equation

In this section we study the Derivative nonlinear Schrödingers equation [23] in the
following form

qt + iqxx +
(

|q|2q
)

x
= 0. (4.1)

We use the transformation

q(x, t) = ei(αx+βt)u(ξ), ξ = ik (x+ 2αt) , (4.2)

where k, α and β are constants to be determined later.
On substituting these into Eq. (4.1) yields

qt = i (βu+ 2kαu′) ei(αx+βt), (4.3)

qxx = −(α2u+ 2kαu′ + k2u′′)ei(αx+βt), (4.4)

(

|q|2q
)

x
= i(αu3 + 3ku2u′)ei(αx+βt), (4.5)



16 N. TAGHIZADEH, M. MIRZAZADEH, M. ESLAMI, AND M. MORADI

Substituting Eqs. (4.3)-(4.5) into Eq. (4.1), we have
(

β − α2
)

u− k2u′′ + αu3 + 3ku2u′ = 0. (4.6)

When balancing u′′ with u2u′ then gives

N + 2 = 3N + 1 ⇒ N =
1

2
. (4.7)

To obtain an analytic solution, N should be an integer. This requires the use of the
transformation

u(ξ) = (v(ξ))
1

2 , (4.8)

that transforms (4.6) to

4
(

β − α2
)

v2 + k2(v′)2 − 2k2vv′′ + 4αv3 + 6kv2v′ = 0. (4.9)

Balancing vv′′ with v2v′ in (4.9) gives

2N + 2 = 3N + 1, (4.10)

so that N = 1. Hence, we look for solutions to Eq. (4.9) in the form

v(ξ) = A0 +A1

(

G′

G

)

, A1 6= 0. (4.11)

Substituting Eqs. (3.11), (3.13) and Eq. (4.11) into Eq. (4.9), collecting the coeffi-

cients of
(

G′

G

)l

, (l = 0, 1, ..., 4) and set it to zero we obtain the system

−2k2λµA0A1 + 4αA3
0 + 4(β − α2)A2

0 + k2µ2A2
1 − 6kµA2

0A1 = 0,

−12kµA0A
2
1−6kλA2

0A1−2k2(λ2−µ)A0A1−6k2µA0A1+12αA2
0A1+8(β−α2)A0A1 = 0,

−6kµA3
1 − 12kλA0A

2
1 − 6kA2

0A1 − 2k2(λ2 − µ)A2
1 − 6k2µA2

1 − 6k2λA0A1 + 2k2µA2
1 +

k2λ2A2
1 + 12αA0A

2
1 + 4(β − α2)A2

1 = 0,

−6kλA3
1 − 12kA0A

2
1 − 4k2λA2

1 − 4k2A0A1 + 4αA3
1 = 0,

−6kA3
1 − 3k2A2

1 = 0. (4.12)

Solving this system by Maple gives

A0 = 0, A1 = −k

2
, µ = 0, α = −kλ

2
, β =

k2λ2

2
, µ = 0, (4.13)

where k and λ are arbitrary constants.
By using Eq. (4.13), expression (4.11) can be written as

v(ξ) = −k

2

(

G′

G

)

, (4.14)
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From Eq. (2.9), Eq. (4.8) and Eq. (4.14), we obtain:

v(ξ) =
kλ

2

(

C2e
−λξ

C1 + C2e−λξ

)

, (4.15)

and

u(ξ) =

√

kλ

2

(

C2e
−λξ

C1 + C2e−λξ

)

1

2

, (4.16)

Thus, in (x, t)-variables we have the exact traveling wave solution of the Derivative
nonlinear Schrödingers equation as follows:

q(x, t) =

√

kλ

2

(

C2e
−ikλ(x−kλt)

C1 + C2e−ikλ(x−kλt)

)

1

2

e−
ikλ

2
(x−kλt). (4.17)

If we choose C1 = C2 in Eq. (4.17), we obtain the exact solution of the Derivative
nonlinear Schrödingers equation as follows:

q(x, t) =

√

kλ

2

{

1

2
− 1

2
tanh

(

ikλ

2
(x− kλt)

)}
1

2

e−
ikλ

2
(x−kλt). (4.18)

5. Conclusion

In this paper, the
(

G′

G

)

-expansion is applied successfully for solving the Kundu-

Eckhaus equation and derivative nonlinear Schrödingers equation. The results show
that this method is efficient in finding the exact solutions of complex nonlinear partial
differential equations.
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