تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,540,885 |
تعداد دریافت فایل اصل مقاله | 15,245,135 |
بررسی اثر ترکیب شیمیایی و جریان بر روی خواص پوششهایNi-W تهیه شده به روش آبکاری پالسی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 41، دوره 51، شماره 4 - شماره پیاپی 97، بهمن 1400، صفحه 369-376 اصل مقاله (551.56 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.11579 | ||
نویسندگان | ||
سمیه احمدیه1؛ علی رسولی* 2؛ میرقاسم حسینی3 | ||
1دکتری، دانشکده فنی مهندسی مکانیک، گروه مهندسی مواد دانشگاه تبریز، تبریز، ایران | ||
2دانشیار، دانشکده فنی مهندسی مکانیک، گروه مهندسی مواد دانشگاه تبریز، تبریز، ایران | ||
3ستاد، دانشکده شیمی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
پوششهای نیکل- تنگستن با داشتن سختی بالا و مقاومت به خوردگی عالی، در سالهای اخیر بسیار مورد توجه محققین قرار گرفتهاند. در این تحقیق پوششهای آلیاژی نیکل- تنگستن به روش رسوبدهی الکتریکی پالسی و در حمامهایی با مقادیر مختلف تنگستات و با اعمال چگالی جریانهای متوسط mA/cm270 -10روی زیر پایه مسی ایجاد شد. سپس مورفولوژی سطح و ترکیب پوششها با استفاده میکروسکوپ الکترونی روبشی (SEM)و طیف سنجی انرژی اشعهX (EDS) و اندازه دانه با روش طیف سنجی اشعهX (XRD)مطالعه شد. سختی با روش میکرو سختی ویکرز (HV) و مقاومت به خوردگی پوششهای حاصل با استفاده از تکنیکهای طیف سنجی امپدانس الکتروشیمیایی (EIS)و پلاریزاسیون تافل (Tafel) در محلولwt% NaCl 5/3 مورد بررسی قرار گرفت. نتایج نشان داد که در شرایط چگالی جریان پوششدهی mA/cm270 و چرخه کاری 20% و در حمام با غلظتg/l 60 تنگستات سدیم، بالاترین سختی و مقاومت به خوردگی (HV 719 و KΩ.cm239/7) حاصل شد. علاوه بر آن با کاهش چگالی جریان پوششدهی از mA/cm270 تا mA/cm210، مقدار میکرو سختی به HV570 یافته و مقاومت به خوردگی پوشش تا مقدار KΩ.cm278/2 کاهش یافت. | ||
کلیدواژهها | ||
آبکاری پالسی؛ پوشش نیکل- تنگستن؛ میکروسختی؛ رفتار الکتروشیمیایی | ||
مراجع | ||
[1] Allahyarzadeh M.H., Aliofkhazraei M., Sabour Rouhaghdam A.R., Torabineja V., Electrodeposition of Ni-W/Al2O3 nanocomposite coating with functionally graded microstructure, Alloys and Compounds, Vol. 666, pp. 217–226, 2016. [2] Kolle M.K., Shajahan S., Basu A., Effect of Electrodeposition Current and Pulse Parameter on Surface Mechanical and Electrochemical Behavior of Ni–W Alloy Coatings, Metallurgical and Materials Transactions A, Vol. 51, pp. 3721-3731, 2020. [3] Mohammadpour Z., Zare H.R., Improving the Corrosion Resistance of the Nickel–Tungsten Alloy by Optimization of the Electroplating Conditions, Transactions of the Indian Institute of Metals, Vol. 73 pp. 937-944, 2020. [4] Ahmadiyeh S., Rasooli A., Hosseini M.G., Preparation of Pulse Electrodeposited Ni-B Coating with RSM Software and Evaluation of Its Microhardness and Electrochemical Behavior, Metallurgical and Materials Transactions A, Vol. 51, pp. 3167-3179, 2020. [5] Sangeetha S., Kalaignan G.P., Tribological and electrochemical corrosion behavior of Ni–W/BN (hexagonal) nano-composite coatings, Ceramics International, Vol.41, pp.10415-10424, 2015. [6] Singh S., Sribalaji M., Wasekar[F1] N.P., Joshi S., Sundararajan G., Singh R., Keshri A.K, Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings, AppliedSurface Science, Vol.364, pp. 264-272, 2016. [7] Obradović M.D., Bošnjakov G.Ž., Stevanović R.M., Maksimović M.D., Despić A.R., Pulse and direct current plating of Ni–W alloys from ammonia–citrate electrolyte, Surface and Coatings Technology, Vol. 200, pp. 4201-4207, 2006. [8] Hosseini M.G., Teymorinia H., Farzaneh A., Khameneh-asl S., Evaluation of corrosion, mechanical and structural properties of new Ni–W–PCTFE nanocomposite coating surface & coating Tech, Vol. 298, Pp. 114-121, 2016. [9] Sangeetha G., Paruthimal J., Tennis Anthuvan A., Pulse electrodeposition of self-lubricating Ni-W/PTFE nanocomposite coatings on mild steel surface, Applied Surface Science, Vol.359, pp.412-420, 2016. [10] Abdel Hamid Z., Hassan H.B., Sultan M., Electrodeposition of Ni-W and Ni-W-P films using a pulse current technique and their application for hydrogen evolution in an acidic solution, Anti-Corrosion Methods and Materials, Vol. 67, pp.38-47, 2020. [11] Nasirpouri F., Sanaeian M.R., Samardak A.S., E.V. Sukovatitsina, An investigation on the effect of surface morphology and crystalline texture on corrosion behavior, structural and magnetic properties of electrodeposited nanocrystalline nickel films, AppliedSurface Science, Vol. 292, Pp. 795-805, 2014. [12] Hosseini M.G., Ahmadiyeh S., Rasooli A., Khameneh-asl S., Pulse Plating of Ni-W-B Coating and Study of Its Corrosion and Wear Resistance, Metallurgical and Materials Transactions A, Vol. 50, pp. 5510-5524, 2019. [13] Mohajeri S., Dolati A., Ghorbani M., The influence of pulse plating parameters on the electrocodeposition of Ni-TiO2 nanocomposite single layer and multilayer structures on copper substrates, Surface and Coatings Technology, Vol. 262, Pp. 173-183, 2015. [14] Chandrasekar M.S., Pushpavanam M., Pulse and pulse reverse plating Conceptual, advantages and applications, Electrochimica Acta, Vol.53, pp.3313-3322, 2008. [15] Ahmadiyeh S., Rasooli A., Hosseini M.G., Corrosion and Wear Study of Ni–W-B/WC Composite Coatings Electroplated by Pulse Plating, Advanced Engineering Materials, 2020, DOI: 10.1002/adem.202000426. [16] Beltowska-Lehman E., Indyka P., Bigos A., Ni–W/ZrO2 nanocomposites obtained by ultrasonic DC electrodeposition, Materials and Design,Vol. 80, pp1–11, 2015. [17] Liju E., Chitharanjan A., Electrodeposition of laminar coatings of Ni–W alloy and their corrosion behavior, Surface & Coatings Technology, Vol.283, pp. 61–69, 2015. [18] Pedro de Lima N., Adriana N., Morphological, structural, microhardness and electrochemical characterisations of electrodeposited Cr and Ni–W coatings, Electrochimica Acta, Vol.55, pp. 2078–2086, 2010. [19] Gobinda G., Bhupendra J., Khagendra T., Soo W., Preparation of Ni–W–Si3N4 composite coatings and evaluation of their scratch resistance properties, Ceramic International, Vol.42, pp.3497–3503, 2016. [20] Hosseini M.G., Abdolmaleki M., Ashrafpoor S., & R.Najjar., Deposition and corrosion resistance of electroless Ni-PCTFE-P nanocomposite coatings. Surface and Coatings Technology, Vol. 206, pp. 4546-4552, 2012. [21] Wasekar N.P., Bathini L., Ramakrishna L., Rao D.S., Padmanabham G., Pulsed electrodeposition, mechanical properties and wear mechanism in Ni-W/SiC nanocomposite coatings used for automotive applications, Applied Surface Science, Vol. 527, pp. 146-156, 2020. [22] Wang Y., Zhou Q., Li K., Zhong Q., Bui Q.B., Preparation of Ni–W–SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance, Ceramics International, Vol. 41, pp. 79-84, 2015. [23] Shreeram D.D., Bedekar V., Li S., Cong H., Doll G.L., Corrosion- and Wear-Resistant Pulse Reverse Current (PRC)-Based Electrodeposited Ni-W Coating, JOM, Vol.70 (2018) pp. 2603-2610, 2018. [24] Pramod Kumar U., Kennady C.J., Zhou Q., Effect of salicylaldehyde on microstructure and corrosion resistance of electrodeposited nanocrystalline Ni–W alloy coatings, Surface and Coatings Technology, Vol. 283, pp. 148-155, 2016. [25] Brenner A.: Electrodeposition of Alloys. Principle and Practice. Academic Press, New York and London, 1963 [26] Shakibi Nia N., Savall C., Creus J., Bourgon J., Girault P., Metsue A., On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys, Materials Science and Engineering: A, Vol. 678, pp. 204-214, 2016. [27] مهدیزاده ر. و قربانی م.، بررسی تاثیر نوع جریان اعمالی، پارامترهای پالس و افزودن نانو ذرات TiO2 بر خواص خوردگی پوشش Ni-Fe، فصلنامه علوم و مهندسی خوردگی، د 41، ش 8، ص 15-7، 1392. [28] Dong Jin K., Roh Y., Seo M.H., Soo Kim J., Effects of the peak current density and duty cycle on material properties of pulse-plated Ni–P–Fe electrodeposits, Surface & Coatings Technology,Vol.192, pp.88 – 93, 2005. | ||
آمار تعداد مشاهده مقاله: 428 تعداد دریافت فایل اصل مقاله: 260 |