تعداد نشریات | 44 |
تعداد شمارهها | 1,304 |
تعداد مقالات | 15,961 |
تعداد مشاهده مقاله | 52,314,599 |
تعداد دریافت فایل اصل مقاله | 15,073,604 |
اصلاح فرآیندECAP با استفاده از کانال مارپیچ بیضوی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 39، دوره 51، شماره 4 - شماره پیاپی 97، بهمن 1400، صفحه 351-360 اصل مقاله (4.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.11537 | ||
نویسندگان | ||
سیدعلی زمانی1؛ حمید گرجی* 2؛ محمد بخشی جویباری3؛ سیدجمال حسینی پور4؛ مرتضی حسین زاده5 | ||
1دانشجوی دکتری، مهندسی مکانیک، دانشگاه صنعتی نوشیروانی، بابل، ایران | ||
2دانشیار، مهندسی مکانیک، دانشگاه صنعتی نوشیروانی، بابل، ایران | ||
3استاد، مهندسی مکانیک، دانشگاه صنعتی نوشیروانی، بابل، ایران | ||
4دانشیار، مهندسی متالورژی، دانشگاه صنعتی نوشیروانی، بابل، ایران | ||
5استادیار، مهندسی مکانیک، دانشگاه آزاد اسلامی آیت ا... آملی، آمل، ایران | ||
چکیده | ||
فلزات و آلیاژهای ریزدانه که به روشهای مختلف تولید می شوند از خواص مکانیکی مناسبی از قبیل استحکام بالا، چقرمگی زیاد و قابلیت شکلپذیری مناسب برخوردار بوده و دارای کاربردهای خاصی هستند. در سالهای اخیر، بررسی روشهای گوناگون تولید و بهبود خواص مکانیکی نمونه ها، موضوع بسیاری از پژوهشها بوده است. اخیراً فرآوری این نوع مواد با استفاده از اعمال تغییر شکل پلاستیک شدید به طور قابل ملاحظهای مورد توجه محققان واقع شده است. در این تحقیق به منظور اصلاح روش مرسوم ECAP، نمونه مسی توسط یک قالب جدید تحت عنوان قالب ترکیبی، تحت تغییر شکل پلاستیک شدید قرار گرفت. به منظور مقایسه خواص مکانیکی نمونه های تولید شده به این روش با روش ECAP، تستهای تجربی انجام شد. با بررسی مقادیر سختی در نقاط گوناگون از سطح مقطع نمونهها و همچنین تعیین استحکام و اندازه دانه در ریزساختارهای ایجاد شده، مشخص شد که پس از انجام فرآیند به روش حاضر، می توان به ساختاری ریز دانهتر با میزان بالاتری از سختی، استحکام تسلیم و استحکام کششی نهایی در مقایسه با روش ECAP دست یافت. | ||
کلیدواژهها | ||
تغییر شکل پلاستیک شدید؛ قالب ترکیبی؛ استحکام کششی؛ سختی؛ ریز ساختار؛ مس خالص | ||
مراجع | ||
[1] Yuntian Zhu., Ruslan Z Valiev., Terence G. Langdon., Nobuhiro Tsuji., Processing of nanostructured metals and alloys via plastic deformation. MRS Bull, Vol. 35, No.12, pp. 977-981, 2010. [2] Leo P., Cerri E., De Marco P.P., Roven H.J., Properties and deformation behavior of severe plastic deformed aluminium alloys. Journal of Materials Processing Technology, No.182, pp. 207-214, 2007. [3] Zhu C.F., Du F.P., Jiao Q.Y., Wang X.M., Chen A.Y., Liu F., Microstructure and strength of pure Cu with large grains processed by equal channel angular pressing. Materials and Design, Vol. 52, pp. 23-29, 2013. [4] Pande C.S., Cooper K.P., Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Progress in Materials Science, Vol. 54, No.6, pp. 689-706, 2009. [5] ChengPeng Wang., FuGuo Li., Lei Wang., HuiJuan Qiao., Review on modified and novel techniques of severe plastic deformation. Science China Technological Sciences, Vol. 55, No.9, pp. 2377- 2390, 2012. [6] Richard W.Hertzberg., Richard P.Vinci., Jason L. Hertzberg., Deformation and Fracture Mechanics of Engineering Materials. John Wiley & Sons, New York, 1996. [7] Saito Y., Tsuji , Utsunomiya H., Sakai T., Hong R.G., Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia, Vol. 39, No.9, pp. 1221–1227, 1998. [8] Seung Chae Yoon., Zenji Horita., Hyoung Seop Kim., Finite element analysis of plastic deformation behavior during high pressure torsion processing. Journal of Materials Processing Technology, Vo. 201, No.1-3, pp. 32-36, 2008. [9] Ranjbar Bahadori S.H., Dehghani K., Comparison of microstructure and mechanical properties of pure copper processed by twist extrusion and equal channel angular pressing. Materials Letters, Vol. 152, pp. 48-52, 2015. [10] Latypov M.I., Alexandrov I.V., Beygelzimer Y.E., Lee S., Kim H.S., Finite element analysis of plastic deformation in twist extrusion. Computational Materials Science, Vo. 60, pp. 194-200, 2012. [11] Chengpeng Wang., Li Fuguo., Lu Hongya, Yuan Zhanwei., Chen Bo., Optimization of Structural Parameters for Elliptical Cross-Section Spiral Equal-Channel Extrusion Dies Based on Grey Theory. Chinese Journal of Aeronautics, Vol. 26, No.1, pp. 209-216, 2013. [12] Valiev R.Z., Langdon T.G., Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, vol. 51, No.7, pp. 881–981, 2006. [13] Dong-Hwan Kang., Tae-Won Kim., Mechanical behavior and microstructural evolution of commercially pure titanium in enhanced multi-pass equal channel angular pressing and cold extrusion. Materials and Design, Vol. 31, pp. 554-560, 2010. [14] Kiyotaka Nakashima., Zenji Horita., Minoru Nemoto., Terence G. Langdon., Development of a multi-pass facility for equal-channel angular pressing to high total strains. Materials Science & Engineering A, V. 281, No.1-2, pp. 82-87, 2000. [15] Agwa M.A., Ali M.N., Amal E., Al-Shorbagy., Optimum processing parameters for equal channel pressing, Mechanics of Materials, Vo. 100, pp. 1-11, 2016. [16] Hongfei Wang., Chunyan Ban., Nannan Zhao., Qingfeng Zhu., Jianzhong Cui., Effective grain refinement of pure Cu processed by new route of equal channel angular pressing. Materials Science & Engineering A, Vol. 751, pp. 246-252, 2019. [17] Patricia Verleysen., Harishchandra Lanjewar., Dynamic high pressure torsion: A novel technique for dynamic severe plastic deformation. Journal of materials processing tech, Vol. 276, 2020. [18] Sh. Ranjbar Bahadori., K. Dehghani., S.A.A Akbari Mousavi., Comparison of microstructure and mechanical properties of pure copper processed by twist extrusion and equal channel angular pressing. Materials Letters, Vo. 152, pp. 48-52, 2015. [19] Hosein Bisadi., Mehdi Rezazadeh Mohamadi., Hadi Miyanaji., Maryam Abdoli., A Modification on ECAP Process by Incorporating Twist Channel. Journal of Materials Engineering and Performance, Vo. 22, No.3, pp. 875-881, 2013. [20] Chengpeng Wang., Fuguo Li., Qinghua Li., Jiang Li., Lei Wang., Junzhe Dong., A novel severe plastic deformation method for fabricating ultrafine grained pure copper. Materials and Design, Vo. 43, pp. 492-498, 2013. [21] Chengpeng Wang., Fuguo Li., Hongya Lu., Yuan Zhanwei., Chen Bo., Optimization of Structural Parameters for Elliptical Cross-Section Spiral Equal-Channel Extrusion Dies Based on Grey Theory. Chinese Journal of Aeronautics, Vol. 26, No.1, pp. 209-216, 2013. [22] Marat I. Latypov., Yan Beygelzimer., Hyoung Seop Kim., Comparative Analysis of Two Twist-Based SPD Processes: Elliptical Cross-Section Spiral Equal-Channel Extrusion vs. Twist Extrusion. Materials Transactions, Vol. 54, No.9, pp. 1587-1591, 2013. [23] Pawet Chyta., Sylwia Bednarek., Aneta Tukaszek-Sotek., Channel cross-section influence on effective strain distribution in ECAP process. Metallurgy and Foundry Engineering, Vol. 43, No.1, pp. 31-40, 2017. [24] F. Djavanroodi., M. Ebrahimi., B. Rajabifar., S. Akramizadeh., Fatigue design factors for ECAPed materials. Materials Science and Engineering A, Vol. 528, No.2, pp. 745-750, 2010. [25] Morteza Hosseinzadeh., Mehran Ghasempour Mouziraji., An analysis of tube drawing process used to produce squared section from round tubes through FE simulation and response surface methodology. The International Journal of Advanced Manufacturing Technology, Vol. 87, No.5-8, pp. 2179-2194, 2016. [26] F. Djavanroodi., A.A. Zolfaghari., M. Ebrahimi., K.M. Nikbin., Equal Channel Angular Pressing of Tubular Samples. Acta Metallurgica Sinica (English Letters), Vol. 26, No.5, pp. 574-580, 2013. ]27[ تلافی نوغانی م. و شاعری م.ح.، بررسی اثر تغییر شکل پلاستیک شدید به وسیله فرآیند پرس در کانالهای زاویهدار همسان (ECAP) بر چقرمگی آلیاژ Al 7075. مجله مهندسی مکانیک مدرس، د. 17، ش. 12، ص 11-20، 1396. | ||
آمار تعداد مشاهده مقاله: 382 تعداد دریافت فایل اصل مقاله: 294 |