تعداد نشریات | 44 |
تعداد شمارهها | 1,304 |
تعداد مقالات | 15,960 |
تعداد مشاهده مقاله | 52,317,240 |
تعداد دریافت فایل اصل مقاله | 15,075,298 |
شبیهسازی عددی سه بعدی بال غشایی با استفاده از روش اندرکنش سیال با سازه (FSI) | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 13، دوره 51، شماره 2 - شماره پیاپی 95، مرداد 1400، صفحه 113-122 اصل مقاله (1.46 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.11287 | ||
نویسندگان | ||
صفیه عبدی نسب1؛ اسفندیار اختیاری* 2؛ محمد سفید3 | ||
1دانشجوی دکتری، گروه مهندسی نساجی، دانشگاه یزد، یزد، ایران | ||
2دانشیار، گروه مهندسی نساجی، دانشگاه یزد، یزد، ایران | ||
3دانشیار، دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران | ||
چکیده | ||
در این پژوهش روش کوپل دو طرفه) اندرکنش دو طرفه سیال با سازه ( برای شبیهسازی بال غشایی مورد مصرف در هواپیماهای فوق سبک ارائه شده است. به این منظور، مدلسازی عددی توسط نرم افزار Ansys و با استفاده از دو حلگر مجزا یکی برای سیال و دیگری برای سازه انجام گرفته است. برخلاف روش یک طرفه، در روش کوپل دو طرفه تغییر شکل بال غشایی در هر گام زمانی مورد توجه قرار میگیرد که باعث افزایش دقت شبیه سازی میگردد. بال غشایی از پوشش پارچه روی پلن ناکا 2418 ساخته شده است. پارچه ارتوتروپیک و غیر متخلخل در نظر گرفته شده است. تاثیر زاویه حمله، مدول یانگ و ضخامت نمونه، روی ضرایب آیرودینامیکی و تغییر شکل بال غشایی بررسی و شبیه سازیها در عدد رینولدز105 1× انجام شد. نتایج نشان میدهد که افزایش مدول یانگ، باعث افزایش 18 درصدی ضریب برآ و کاهش 75 و 78 درصدی حداکثر جابجایی بال غشایی در جهت X و Y میگردد. افزایش ضخامت نیز، باعث کاهش 85 و 80 درصدی حداکثر جابجایی بال غشایی در جهت X و Y شد. | ||
کلیدواژهها | ||
اندرکنش سیال با سازه؛ بال غشایی؛ مدول یانگ؛ ضرایب آیرودینامیکی؛ ضخامت پارچه؛ جابجایی بال غشایی | ||
مراجع | ||
[1] Sahin M., Sankar L., Chandrasekhara M. and Tung C., Dynamic Stall Alleviation Using a Deformable Leading Edge Concept - A Numerical Study. Journal of Aircraft. Vol.40, pp.77-89, 2003. [2] Mashud M. and Umemura A., Experimental Investigation on Aerodynamic Characteristics of a Paraglider Wing. Transactions of the Japan Society for Aeronautical and Space Sciences. Vol. 49, No. 163, pp. 9–17, 2006. [3] Song A., Tian X., Israeli E., Galvao R., Bishop K., Swartz S. and Breuer K., Aeromechanics of Membrane Wings with Implications for Animal Fight. AIAA Journal. Vol.46, pp.2096-2106, 2008. [4] Rojratsirikul P., Wang Z. and Gursul I., Unsteady Fuid–Structure Interactions of Membrane Airfoils at Low Reynolds Number. Experiments in fluids. Vol. 46, pp. 859–872, 2009. [5] Khalid S.S., Zhang L., Zhang X.W. and Sun K., Three-Dimensional Numerical Simulation of a Vertical Axis Tidal Turbine Using the Two-way Fluid Structure Interaction Approach. Journal of Zhejiang University-Science a (Applied Physics & Engineering). Vol. 14, No.8, pp. 574-582, 2013. [6] Kang W., Zhang J., Lei P. and Xu M., Computation of Unsteady Viscous Flow Around a Locally Flexible Airfoil at Low Reynolds Number. Journal of Fluids and Structures. Vol. 46, pp. 42–58,2014. [7] Sangeetha C, Veeranjaneyulu M. and Guptha D., Fluid Structure Interaction on AGARD 445.6 Wing at Transonic Speeds. International Journal of Engineering Trends and Applications (IJETA).Vol. 2, No. 4, pp.28-34, 2015. [8] Burnett B., Coupled Fluid-Structure Interaction Modeling of a Parafoil. MSc. Thesis, Embry-Riddle Aeronautical University, 2016. [9] Piquee J. and Breitsamter C., Numerical and Experimental Investigations of an Elasto-Flexible Membrane Wing at a Reynolds Number of 280,000. Journal of Aerospace. Vol. 4, No. 39, pp. 1-17, 2017. [10] White F.M, Fluid Mechanics, Fourth Edition, McGraw-Hill Series in Mechanical Engineering, p.236. [11] Mohamed M. H., Ali A. M. and Hafiz A. A., CFD Analysis for H-rotor Derrieuss Turbin as a Low Speed Wind Energy Converter. Journal. of Engineering Science and Technology. pp.1-13,2014. [12] Bui T. T., Analysis of low-speed stall aerodynamics of a swept wing with seamless flaps. In 34th AIAA Applied Aerodynamics Conference, California, USA, 2016. [13] Garcia J. A., Melton, J. E., Schuh, M., James, K. D., Long, K. R., Vicroy, D. D., and Stremel, P. M., NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration. In 54th AIAA Aerospace Meeting,California, USA ,2016. [14] Sagmo K. F., Bartl, J., and Sætran, L., Numerical simulations of the NREL S826 airfoil. Journal of Physics. Vol.753, 2016. [15] Shankara P.and Snyder D., Numerical simulation of high lift trap wing using STAR-CCM+. In 30th AIAA Applied Aerodynamics Conference,New Orleans, USA ,2012. [16] Benra F.K., Dohmen H.J., Pei J., Schuster S. and Wan B., A Comparison of One-Way and Two-Way Coupling Methods for Numerical Analysis of Fluid-Structure Interactions. Journal of Applied Mathematics. pp.1-17,2011. [17] داداشیان ف. و گودرزی ر.، آزمایشات فیزیکی پارچه ، مرکز جهاد دانشگاهی، تهران ،1384. [18] Penava Ž., ŠimićPenava D. and Knezić Ž., Determination of the Elastic Constants of Plain Woven Fabrics by a Tensile Test in Various Directions, Fibers and Textiles in Eastern Europe. Vol.22, No. 104, pp. 57-63, 2014. [19] Kuo Y., Lin H. and Wang C., Estimating the Elastic Modulus through the Thickness Direction of a Uni-Direction Lamina Which Possesses Transverse Isotropic Property. Journal of Reiforced Plastics and Composites. Vol. 26, No. 16,2007. [20] ملکی و. و انصاری ن.، اصول و نظریات آزمایش های فیزیکی الیاف، نخ و پارچه، مرکز جهاد دانشگاهی، تهران،1394. [21] صنیعی نژاد م.، مقدمهایی بر مفاهیم جریان های آشفته و مدل سازی آن، ویرایش سوم،1383. [22] NACA 2418 (naca2418-il) Xfoil prediction polar at RE=100,000. Accessed on 8 September 2018; http:// airfoiltools. com/ polar/ details? polar=xf-naca2418-il-100000 [23] Gordnier R.E., High Fidelity Computational Simulation of a Membrane Wing Airfoil. Journal of Fluids and Structures. Vol.25, pp. 897–917, 2009. [24] Oggiano,U., and Saetran, L., A Low Drag Suit for Ski-Cross Compettitions, Procedia Engineering, Vol.2, pp. 87-92, 2010. | ||
آمار تعداد مشاهده مقاله: 342 تعداد دریافت فایل اصل مقاله: 231 |