تعداد نشریات | 44 |
تعداد شمارهها | 1,312 |
تعداد مقالات | 16,132 |
تعداد مشاهده مقاله | 52,721,632 |
تعداد دریافت فایل اصل مقاله | 15,388,712 |
آنالیز بهرهوری انرژی با درنظرگرفتن عدمقطعیت در ساختمانها | ||
مجله مهندسی برق دانشگاه تبریز | ||
دوره 50، شماره 3 - شماره پیاپی 93، آبان 1399، صفحه 1047-1059 اصل مقاله (520.49 K) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
محمد جواد بردباری؛ محمد رستگار* ؛ علیرضا سیفی | ||
دانشکده مهندسی برق و کامپیوتر- دانشگاه شیراز | ||
چکیده | ||
تحلیل بهرهوری انرژی در ساختمانها از دو قسمت، تخمین مصرف و بهینهسازی مصرف انرژی، تشکیل شدهاست که گام اصلی در راستای دستیابی به ساختمانهای هوشمند میباشد. از آنجاکه بخشی از پارامترهای مؤثر بر این تحلیلها غیرقطعی میباشند، در این مقاله به تحلیل مصرف و بهینهسازی انرژی در ساختمان به صورت احتمالی پرداخته میشود. بدینمنظور، تابع چگالی پارامترهای غیرقطعی ساختمان با استفاده از روش آماری تخمین نقطهای مدل شده و سپس به بهینهسازی مصرف انرژی ساختمان پرداخته میشود. برای محاسبه مصرف انرژی در ساختمان از نرمافزار انرژیپلاس و برای بهینهسازی از نرمافزار متلب استفاده میشود. توابع هدف در بهینهسازی چندهدفه پیشنهادی، چگالی انرژی مصرفی ساختمان و شاخص راحتی حرارتی ساکنین میباشند. از یک ساختمان تجاری دوازده طبقه بهمنظور نمونه مورد مطالعه استفاده میشود. بهمنظور ارزیابی روش پیشنهادی، روش احتمالی تحلیل بازدهی مصرف انرژی با روش غیراحتمالی مرسوم مقایسه میشود. نتایج حاصل از این ارزیابی بهخوبی نشان میدهد که درنظرنگرفتن پارامترهای غیرقطعی در ساختمان، خطای چشمگیری در تحلیل بازدهی انرژی آن سبب میشود بهطوریکه میانگین اختلاف بین مقادیر بهینه پارامترهای متغیر حاصل از هر دو روش به 28 درصد میرسد. در انتها نیز حساسیت روش پیشنهادی نسبت به تغییر اقلیم و آبوهوا ارزیابی میشود. | ||
کلیدواژهها | ||
ممیزی انرژی؛ تحلیل بازدهی انرژی در ساختمان؛ چگالی مصرف انرژی ساختمان؛ راحتی حرارتی ساکنین | ||
مراجع | ||
[1] A. Allouhi, Y. El Fouih, T. Kousksou, A. Jamil, Y. Zeraouli, and Y. Mourad, “Energy consumption and efficiency in buildings: current status and future trends,” Journal of Cleaner production,vol. 109, pp. 118-130, 2015. [2] C. J. Kibert, Sustainable construction: green building design and delivery, John Wiley & Sons, 2016. [3] A. J. Marszal et al., “Zero Energy Building–A review of definitions and calculation methodologies,” Energy and buildings, vol. 43, no. 4, 2011. [4] S. Pless and P. Paul Torcellini PhD, “Getting to net zero,” ASHRAE Journal, vol. 51, no. 9, 2009. [5] D. B. Crawley, J. W. Hand, M. Kummert, and B. T. Griffith, “Contrasting the capabilities of building energy performance simulation programs,” Building and environment, vol. 43, no. 4, 2008. [6] A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based optimization methods applied to building performance analysis,” Applied Energy, vol. 113, 2014. [7] N. Delgarm, B. Sajadi, S. Delgarm, and F. Kowsary, “A novel approach for the simulation-based optimization of the buildings energy consumption using NSGA-II: Case study in Iran,” Energy and Buildings, vol. 127, 2016. [8] N. Delgarm, B. Sajadi, F. Kowsary, and S. Delgarm, “Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO),” Applied Energy, vol. 170, 2016. [9] L. Junghans and N. Darde, “Hybrid single objective genetic algorithm coupled with the simulated annealing optimization method for building optimization,” Energy and Buildings,vol. 86, 2015. [10] S. N. Murray, B. P. Walsh, D. Kelliher, and D. O'Sullivan, “Multi-variable optimization of thermal energy efficiency retrofitting of buildings using static modelling and genetic algorithms–A case study,” Building and Environment,vol. 75, 2014. [11] J. Wright and A. Alajmi, “Efficient Genetic Algorithm sets for optimizing constrained building design problem,” International Journal of Sustainable Built Environment, vol. 5, no. 1, 2016. [12] W. Yu, B. Li, H. Jia, M. Zhang, and D. Wang, “Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design,” Energy and Buildings, vol. 88, pp. 135-143, 2015. [13] عباس محمدویسی، علیرضا حاتمی، «ارائه چارچوبی برای مدیریت انرژی خانه هوشمند: برنامهریزی بهینه تجهیزات خانگی و برنامهریزی بهینه بهرهبرداری از منابع انرژی تجدیدپذیر»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 1، بهار 1394. [14] مجید محمدپور، حمید پروین، «الگوریتم ژنتیک آشوبگونه مبتنی بر حافظه و خوشهبندی برای حل مسائل بهینهسازی پویا»، مجله مهندسی برق دانشگاه تبریز، جلد46، شماره 3، پاییز 1395. [15] D. Celarec and M. Dolšek, “The impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildings,” Engineering Structures,vol. 52, pp. 340-354, 2013. [16] A. B. Liel, C. B. Haselton, G. G. Deierlein, and J. W. Baker, “Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings,” Structural Safety, vol. 31, no. 2, 2009. [17] M. Manfren, N. Aste, and R. Moshksar, "Calibration and uncertainty analysis for computer models–a meta-model based approach for integrated building energy simulation,” Applied energy, vol. 103, pp. 627-641, 2013. [18] S. S. Amiri, M. Mottahedi, and S. Asadi, “Using multiple regression analysis to develop energy consumption indicators for commercial buildings in the US,” Energy and Buildings,vol. 109, pp. 209-216, 2015. [19] M. J. Bordbari, A. R. Seifi, and M. Rastegar, “Probabilistic energy consumption analysis in buildings using point estimate method,” Energy, vol. 142, pp. 716-722, 2018. [20] A. Ioannou and L. Itard, “Energy performance and comfort in residential buildings: Sensitivity for building parameters and occupancy,” Energy and Buildings, vol. 92, pp. 216-233, 2015. [21] S. Sun, K. Kensek, D. Noble, and M. Schiler, “A method of probabilistic risk assessment for energy performance and cost using building energy simulation,” Energy and Buildings, vol. 110, pp. 1-12, 2016. [22] L. Van Gelder, H. Janssen, and S. Roels, “Probabilistic design and analysis of building performances: methodology and application example,” Energy and Buildings, vol. 79, pp. 202-211, 2014. [23] Z. Yang and B. Becerik-Gerber, “A model calibration framework for simultaneous multi-level building energy simulation,” Applied Energy, vol. 149, pp. 415-431, 2015. [24] A. H. Neto and F. A. S. Fiorelli, “Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption,” Energy and buildings, vol. 40, no. 12, 2008. [25] M. Krarti, Energy audit of building systems: an engineering approach, CRC press, 2016. [26] M. Taleghani, M. Tenpierik, S. Kurvers, and A. Van Den Dobbelsteen, “A review into thermal comfort in buildings,” Renewable and Sustainable Energy Reviews,vol. 26, pp. 201-215, 2013. [27] P. O. Fanger and J. Toftum, “Extension of the PMV model to non-air-conditioned buildings in warm climates,” Energy and buildings,vol. 34, no. 6, 2002. [28] P. Fanger, “moderate thermal environments determination of the PMV and PPD indices and specification of the conditions for thermal comfort,” ISO 7730, 1984. [29] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” in International Conference on Parallel Problem Solving From Nature, Springer, pp. 849-858, 2000. [30] Department of Energy (DOE). Commercial Reference Buildings. december 2017, https://energy.gov/eere/buildings/commercial-reference-buildings. [31] ASHRAE Standard, “Standard 55-2013: Thermal environmental conditions for human occupancy,” American Society of Heating, Refrigerating, and air-conditioning Engineers, Atlanta, 2013. [32] F. R. Cecconi, M. Manfren, L. C. Tagliabue, A. L. C. Ciribini, and E. De Angelis, “Probabilistic behavioral modeling in building performance simulation: A Monte Carlo approach,” Energy and Buildings,vol. 148, pp. 128-141, 2017. [33] Q. Cheng, S. Wang, C. Yan, and F. Xiao, “Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings,” Applied Energy, vol. 185, pp. 1613-1624, 2017. [34] L. C. Tagliabue, M. Manfren, A. L. C. Ciribini, and E. De Angelis, “Probabilistic behavioural modeling in building performance simulation—The Brescia eLUX lab,” Energy and Buildings,vol. 128, pp. 119-131, 2016. | ||
آمار تعداد مشاهده مقاله: 427 تعداد دریافت فایل اصل مقاله: 401 |