تعداد نشریات | 43 |
تعداد شمارهها | 1,266 |
تعداد مقالات | 15,604 |
تعداد مشاهده مقاله | 51,611,950 |
تعداد دریافت فایل اصل مقاله | 14,541,342 |
حل تشابهی انتروپی تولیدی جریان نانو سیال سیلیکا- آلومینیوم هیبرید برای نقطه سکون همرفت مخلوط (ترکیبی) روی یک صفحه متخلخل در حضور میدان مغناطیسی: یک مدل ساده جهت خنککاری سطوح | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 28، دوره 51، شماره 4 - شماره پیاپی 97، بهمن 1400، صفحه 251-258 اصل مقاله (458.76 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.11132 | ||
نویسندگان | ||
اسماعیل لکزیان* 1؛ مازیار حکمت شعار2 | ||
1دانشیار، گروه مهندسی مکانیک، دانشگاه حکیم سبزواری، سبزوار، ایران | ||
2دانشجو کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه حکیم سبزواری، سبزوار، ایران | ||
چکیده | ||
در این تحقیق، انتروپی تولیدی توسط یک نانو سیال در جریان لایه مرزی دو بعدی و دائمی، روی صفحه تخت متخلخل عمودی، بههمراه میدان مغناطیسی بررسی شد. معادلات حاکم به روش تشابهی به معادلات دیفرانسیل معمولی غیر خطی تبدیل و با روش رانج کوتا حل گردید. در این تحقیق به بررسی تأثیر متغیرهای شناوری، مغناطیس، درصد حجمی نانو سیال، بهصورت مجزا بر روی سرعت، دما و انتروپی تولیدی بیبعد پرداخته شد. نتایج نشان داد که در انتروپی تولیدی، با افزایش متغیر تشابهی، پروفیل دمایی و قدر مطلق گرادیان دمایی کاهش پیدا میکند، درنتیجه انتروپی گرمایی تولیدی بیبعد کاهش یافته و به سمت صفر میل میکند و بعد از مقدار مشخصی لایه مرزی گرمایی ناپدید شده و فقط انتروپی ناشی از اتلافات اصطکاک و مغناطیس تولید میشود. بررسیها نشان داد با افزایش غلظت نانو ذرات، سرعت سیال در حدود 30 درصد کاهش مییابد و باعث افزایش حدوداً 40 درصدی در پروفیل دمایی سیال میشود و همچنین با افزایش میزان مغناطیس، سرعت نانو سیال حدود 15 درصد کاهش و پروفیل دمایی سیال حدود 10 درصد کاهش مییابد. | ||
کلیدواژهها | ||
حل تشابهی؛ صفحه متخلخل؛ تحلیل آنتروپی؛ بلازیوس؛ نانوسیال؛ نقطه سکون | ||
مراجع | ||
[1] Dinarvand S., Hosseini R., Abulhasansari M., Pop I., Buongiorno’s model for double-diffusive mixed convective stagnation-pointflow of a nanofluid considering diffusiophoresis effect of binary base fluid. Advanced Powder Technology, Vol. 26, No.5, pp. 1423–1434, 2015.
[2] Dhinesh Kumar D., Valan Arasu A., A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renewable and Sustainable Energy Reviews, Vol. 81, pp. 1669–1689, 2018.
[3] Hayat T., Nadeem S., Heat transfer enhancement with Ag – CuO/water hybrid nanofluid. Results in Physics, Vol. 7, pp. 2317- 2324, 2017. [4] Buongiorno J., Hu L-W., Kim S. J., Hannink R., Truon B. g, Forrest E., Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nuclear Technology, Vol. 162, No. 1, pp. 80-91, 2008.
[5] Sidik N.A.C., Jamil M.M., Aziz Japar W.M.A., Adamu I.M., A review on preparation methods, stability and applications of hybrid nanofluids. Renewable and Sustainable Energy Reviews, Vol. 80, pp. 1112–1122, 2017.
[6] Sarkar J., Ghosh P., Adil A., A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews, Vol. 43, pp. 164–177, 2015.
[7] Eastman J. A, Choi S. U. S., Li S., Yu W., and Thompson L. J., Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, Vol. 78, No.6, pp. 718–720, 2001.
[8] Xuan Y. and Lin Q., Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transfer, Vol.125, No.1, pp. 151 –155, 2003.
[9] Jamaludin A., Nazar R., Pop I., Three-dimensional mixed convection stagnation-point flow over a permeable vertical stretching/shrinking surface with a velocity slip. Chinese Journal of Physics, Vol. 55, No.5, pp. 1865–1882, 2017.
[10] Devi C.D.S., Takhar H.S., Nath G., Unsteady mixed convection flow in stagnation region adjacent to a vertical surface. HeatMass Transfer, Vol. 26, No.2, pp. 71–79, 1991.
[11] Lok Y.Y., Amin N., Campean D., Pop I., Steady mixed convection flow of a micropolar fluid near the stagnation-point on avertical surface, Int. J. Numerical Methods Heat Fluid Flow, Vol. 15, pp. 654–670, 2005.
[12] Ishak A., Nazar R., Bachok N., Pop I., MHD mixed convection flow near the stagnation-point on a vertical permeable surface. Physica A:Statistical Mechanics and its Applications, Vol. 389, No.1, pp. 40–46, 2010.
[13] Nasir N.A.A.M., Ishak A., Pop I., Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking sheet, Chinese Journal of Physics, Vol. 55, No.5, pp. 2081–2091, 2017.
[14] Santhi G., Rao C.N.B., Murthy A.S.N., Dual solutions in mixed convection with variable physical properties. Theoretical and Applied Mechanics Letters, Vol. 1, No.2, pp. 1-5, 2011.
[15] Ishak A., Nazar Roslinda, Pop I., Dual solutions in mixed convection boundary layer flow of micropolar fluids. Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No.4, pp. 1324–1333, 2009.
[16] Subhashini S.V., Sumathi R., Dual solutions of a mixed convection flow of nanofluids over a moving vertical plate. International Journal of Heat and Mass Transfer, Vol. 71, pp. 117–124, 2014.
[17] Dinarvand S., Hosseini R., Pop I., Abbassi A., Homotopy analysis method for mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder with prescribed surface temperature, Thermal Science, Vol. 19, No.2, pp. 549–561, 2015.
[18] Ferdows M. and Alzahrani F., Dual solutions of nanaofluid forced convective flow with heat transfer and porous media past a
moving surface. PhysicaA: Statistical Mechanics and its Applications, Vol. 389, No.1, pp. 81–97, 2020.
[19] Emad A.H., Dual exact solutions of graphene–water nanofluid flow over stretching/ shrinking sheet with suction/injection and heat source/sink: Critical values and regions with stability. Powder Technology, Vol. 342, pp. 528–544, 2019
[20] Lund A.,Omar Z., Khan I., Mathematical analysis of magneto hydrodynamic (MHD) flow of micropolar nanofluid under buoyancy effects past a vertical shrinking surface: dual solutions. Heliyon, Vol. 5, No.5, pp. 24-32, 2019.
[21] Bansal J.L., Magneto fluid dynamics of viscous fluids. Jaipur Publishing House, pp.361–373, 1994.
[22] Kumaran V., Kumar A. V., and Pop I., Transition of MHD boundary layer flow past a stretching sheet, J. Communication in Nonlinear Science and Numerical Simulation, Vol. 15, No.2, pp. 300- 311, 2010.
[23] Mabood F., Khan W. A., and Ismail A. I. M., MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. J. Magnetism and Magnetic Materials, Vol. 374, pp. 569–576, 2015.
[24] Vishnu-Ganesh N., Abdul-Hakeem A.K., Jayaprakash R., and Ganga B., Analytical and numerical studies on hydro magnetic flow of water based metal nanofuids over a stretching sheet with thermal radiation effect. J. Nanofluids, Vol. 3, No.2, pp. 154–161, 2014.
[25] Aliakbar V., Alizadeh –Pahlavan A., and Sadeghy K., The in fluence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No.3, pp. 779 – 794, 2009.
[26] Rostami M., Dinarvand S., Pop I., Dual soloutions for mixed convective stagnation-point ßow of anaqueous silica-alumina hybrid nano fuid. Chinese journal of physics, Vol. 56, No.5, pp. 2465-2478, 2018.
[27] Ingham D.B., Singular and non-unique solutions of the boundary-layer equations for the flow due to free convection near a continuously moving vertical plate. J. Appl. Math. Phys, Vol. 37. No.4, pp. 559–572, 1986. [28] Ridha A., Aiding flows non-unique similarity solutions of mixed-convection boundary-layer equations, J. Appl. Math. Phys, Vol. 47, No.3, pp. 341–352, 1996.
[29] Fracasso F., Influence of quench rate on the hardness obtained after artificial ageing of an Al-Si-Mg alloy, MSc. Thesis, University of Padova, 2010.
[30] Blasius H., Grenzschichten in Fl flussigkeiten mit kleiner Reibung, Z Math. Phys, Vol. 56, No.1, 1907.
[31] Tamim H., Dinarvand S., Hosseini R., Pop I., MHD mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface: a comprehensive report of dual solutions. Heat Mass Transfer, Vol. 50, No.5, pp. 639–650, 2014.
[32] Bejan A., Second-law analysis in heat transfer and thermal
design, Advances in Heat Transfer, Vol. 15, pp. 1–58, 1982. | ||
آمار تعداد مشاهده مقاله: 337 تعداد دریافت فایل اصل مقاله: 190 |