تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,537,621 |
تعداد دریافت فایل اصل مقاله | 15,241,767 |
تعیین مکان و ظرفیت بهینة فیلترهای فعال با کنترل محلی در شبکههای توزیع انرژی الکتریکی | ||
مجله مهندسی برق دانشگاه تبریز | ||
دوره 50، شماره 3 - شماره پیاپی 93، آبان 1399، صفحه 1247-1259 اصل مقاله (1.36 M) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
حامد رضاپور1؛ حمید فلقی* 1؛ مصطفی اسماعیلی* 2 | ||
1دانشکده مهندسی برق و کامپیوتر- دانشگاه بیرجند | ||
2دانشکده مهندسی کامپیوتر و صنایع- دانشگاه صنعتی بیرجند | ||
چکیده | ||
نصب فیلترهای فعال یکی از کارآمدترین روشهای ممکن برای کاهش آلودگی هارمونیکی شبکههای توزیع محسوب میشود. سیستم کنترل فیلترهای فعال در پژوهشهای صورتگرفته در زمینة مکانیابی بهینة این فیلترها بهصورت یکپارچه مدلسازی شده است و مکانیزم کنترل محلی آنها تاکنون در این تحقیقات نادیده گرفته شده است. سیستمهای کنترل یکپارچه به زیرساختهای سختافزاری و نرمافزاری قدرتمندی نیاز دارند و ازآنجاکه چنین زیرساختهایی در بسیاری از شبکههای توزیع ازجمله ایران وجود ندارد لذا پیادهسازی روشهای موجود برای تعیین مکان و ظرفیت فیلترهای فعال در این شبکهها عملاً غیرممکن و غیرعملی است. در سیستم کنترل محلی فیلترهای فعال، فیلتر با سنجش و تزریق عکس جریانهای هارمونیکی عبوری از نقطة اتصال به شبکه، سعی میکند تا جریان شاخة بالادست محل نصب، تا حد ممکن به سینوسی کامل نزدیک شود. در این مقاله برای اولین بار تعیین مکان و ظرفیت بهینة فیلترهای فعال در شبکههای توزیع شعاعی با مدلسازی و در نظر گرفتن سیستم کنترل محلی آنها فرمولبندی و حل شده است. برای حل مسئله از الگوریتم ژنتیک بهعنوان ابزار بهینهسازی استفاده شده و در انتها نتایج حاصل از روش پیشنهادی در این مقاله با نتایج حاصل از روش مبتنی بر کنترل یکپارچة فیلترهای فعال توسط انجام چندین آزمایش بر روی دو شبکة توزیع 9 و 33 باسه مقایسه شده است. | ||
کلیدواژهها | ||
آلودگی هارمونیکی؛ مکانیابی فیلتر فعال؛ سیستم کنترل محلی؛ شبکة توزیع | ||
مراجع | ||
[1] سید حسین طباطبایی و علیرضا جلیلیان، «کنترل بازیاب دینامیکی ولتاژ مبتنی بر فیلتر شکافی تطبیقی و میراساز فعال بهمنظور بهبود کیفیت توان»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 2، صفحات 34-23، 1393. [2] علی انشایی و رحمتالله هوشمند، «یک روش جدید برای شناسایی اغتشاشات کیفیت توان با استفاده از تبدیل S»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، صفحات 49-37، 1394. [3] V.E. Wagner, “Effects of harmonics on equipment,” IEEE Transactions on Power Delivery, vol. 8, no. 2, pp. 672-680, 1993. [4] J. Teng and C. Chang, “Backward/forward sweep-based harmonic analysis method for distribution systems,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1665-1672, 2007. [5] Y. Zhao, H. Deng, J. Li, and D. Xia, “Optimal planning of harmonic filters on distribution systems by chance constrained programming,” Electric Power System Research, vol. 68, no. 2, pp. 149-156, 2003. [6] R. Keypour, R. Seifi, and A. Varjani, “Genetic based algorithm for active power filter allocation and sizing,” Electric Power System Research, vol. 71, no. 1, pp. 41-49, 2004. [7] I. Ziari, and A. Jalilian, “A new approach for allocation and sizing of multiple active power-line conditioners,” [8] M. Shivaie, A. Salemnia, and M.T. Ameli, “A multi-objective approach to optimal placement and sizing of multiple active power filters using a music-inspired algorithm,” Applied Soft Computing, vol. 22, pp. 189–204, 2014. [9] W.M. Grady, M.J. Samotyj, and A.H. Noyola, “Survey of active power line conditioning methodologies,” IEEE Transactions on Power Delivery, vol. 5, no. 3, pp. 1536-1542, 1990. [10] B. Singh, K. Al. Haddad, and A. Chandra, "A review of active filters for power quality improvement,” IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 960-971, 1999. [11] M.J. Samotyj, W.M. Grady, and A.H. Noyola, “Minimizing network harmonic voltage distortion with an active power line conditioner,” IEEE Transactions on Power Delivery, vol. 6, no. 4, pp. 1690-1697, 1991. [12] W.M. Grady, M.J. Samotyj, and A.H. Noyola, “The application of network objective functions for actively minimizing the impact of voltage harmonics in power systems,” IEEE Transactions on Power Delivery, vol. 7, no. 3, pp. 1379-1386, 1992. [13] W.K. Chang, W.M. Grady, and M.J. Samotyj, “Meeting IEEE-519 harmonic voltage and voltage distortion constraints with an active power line conditioner,” IEEE Transactions on Power Delivery, vol. 9, no. 3, pp. 1531-1537, 1994. [14] W.K. Chang and W.M. Grady, “Minimizing harmonic voltage distortion with multiple current-constrained active power line conditioners,” IEEE Transactions on Power Delivery, vol. 12, no. 2, pp. 837-843, 1997. [15] Y.-Y. Hong, Y.-L. Hsu, and Y.-T. Chen, “Active power line conditioner planning using an enhanced optimal harmonic power flow method,” Electric Power System Research, vol. 52, no. 2, pp. 181-188, 1999. [16] T.T. Chang and H.C. Chang, “An efficient approach for reducing harmonic voltage distortion in distribution systems with active power line conditioners,” IEEE Transactions on Power Delivery, vol. 15, no. 3, pp. 990-995, 2000. [17] A. Moradifar and H.R. Soleymanpour, “A fuzzy based solution for allocation and sizing of multiple active power filters,” Journal of Power Electronics, vol. 12, no. 5, pp. 830-841, 2012. [18] D. Grabowski and M. Maciążek, “Cost effective allocation and sizing of active power filters using genetic algorithms,” in Proc. of 2013 12th Int. Conf. on Environment and Elec.Eng. (EEEIC), Poland, 2013. [19] A. Moradi Far and A. Akbari Foroud, “Cost-effective optimal allocation and sizing of active power filters using a new fuzzy-MABICA method,” IETE Journal of Research, vol. 62, no. 3, pp. 307-322, 2015. [20] G. Carpinelli, D. Proto, and A. Russo, “Optimal planning of active power filters in a distribution system using trade off/risk method,” IEEE Transactions on Power Delivery, vol. 32, no. 2, pp. 841-851, 2017. [21] Y.Y. Hong and Y.K. Chang, “Determination of locations and sizes for active power line conditioners to reduce harmonics in power system,” IEEE Transactions on Power Delivery, vol. 11, no. 3, pp. 1610-1617, 1996. [22] A. Ulinuha, M. Masoum, and S. Islam, “Harmonic power flow calculations for a large power system with multiple nonlinear loads using decoupled approach,” in Australasian Universities Power Engineering Conference, AUPEC 2007, Australia, 2007. [23] Y.H. Yan, C.S. Chen, C.S. Moo, and C.T. Hsu, “Harmonic analysis for industrial customers,” IEEE Industry Applications Society, vol. 30, no. 2, pp. 462–468, 1994. [24] T.S. Chung and H.C. Leung, "A genetic algorithm approach in optimal capacitor selection with harmonic distortion considerations," International Journal of Electrical Power & Energy Systems, vol. 21, no. 8, pp. 561-569, 1999. [25] Y. Baghzouz, “Effects of nonlinear loads on optimal capacitor placement in radial feeders,” IEEE Transactions on Power Delivery, vol. 6, no. 1, pp. 245-251, 1991. [26] H.C. Chin, “Optimal shunt capacitor allocation by fuzzy dynamic programming,” Electric Power Systems Research, vol. 35, no. 2, pp. 133-139, 1995. [27] “IEEE Recommended practices and requirements for harmonic control in electrical power systems,” IEEE Std. 519–1992,” 1993. [28] R. Ranjan and D. Das, “Simple and Efficient Computer Algorithm to Solve Radial Distribution Networks,” Electric Power Components and Systems, vol.31, pp. 95-107, 2003 | ||
آمار تعداد مشاهده مقاله: 412 تعداد دریافت فایل اصل مقاله: 366 |