تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,953,770 |
تعداد دریافت فایل اصل مقاله | 15,624,454 |
بهبود عملکرد الگوریتم رقابت استعماری و کاربرد آن در کنترل پرواز بالگرد | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 27، دوره 51، شماره 3 - شماره پیاپی 96، آبان 1400، صفحه 239-248 اصل مقاله (621.14 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.10997 | ||
نویسندگان | ||
امیر علی نیکخواه* 1؛ فرهاد پاکرو2 | ||
1دانشیار، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران | ||
2دانشجوی دکتری، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران | ||
چکیده | ||
در این مقاله هدف بهبود عملکرد الگوریتم رقابت استعماری است. روش مورد استفاده افزودن جستجوی محلی به الگوریتم است که در دو مرحله صورت می گیرد. در مرحلهی اول انتخاب پارامترهای بهینهسازی به نوعی هوشمندانه انجام میشود و جمعیت به سمت نقطهی بهینه هدایت میشوند. در مرحلهی دوم پس از هر 10 تکرار، یک جستجوی محلی در میان مستعمرهها و استعمارگر چند فرمانروایی قدرتمند انجام میشود تا ضمن عدم ایجاد تغییر محسوس در فرایند رسیدن به جواب، پاسخ دقیقتری حاصل شود. روش بر روی تمامی فرمانرواییها اعمال نمیشود تا حجم محاسبات افزایش نیابد. الگوریتم ارائه شده با توابع محک سنجیده شدهاست و طبق مقایسهی انجامشده میان عملکرد آنها، عملکرد الگوریتم اصلی در هنگام افزایش تعداد ابعاد مساله بهبود یافتهاست. با تعداد پارامترهای مجهول کمتر، هم زمان همگرایی و هم پاسخ کمینهی نهایی در دو روش نزدیک به هم هستند، اما با افزایش تعداد ابعاد مساله، زمان حل به بیش از نصف کاهش و میزان کمینه تا بیش از 10 مرتبهی اعشار بهبود یافتهاست. در انتها از این روش برای بهینهسازی در یافتن بهرههای کنترلی مناسب برای کنترل بالگرد استفاده شدهاست. | ||
کلیدواژهها | ||
الگوریتم رقابت استعماری؛ جستجوی محلی؛ الگوریتم ژنتیک؛ توابع محک؛ کنترل بالگرد؛ کنترل پسخور حالت | ||
مراجع | ||
[1] Atashpaz-Gargari E, Social optimization algorithm development and performance review, MSc. Thesis, Tehran University School of Electrical and Computer Engineering, 2009. [2] Atashpaz-Gargari E. and Lucas C., Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In IEEE Congress on Evolutionary computation, Singapore, 2007. [3] Zhang Y., Wang Y. and Peng C., Improved imperialist competitive algorithm for constrained optimization. In International Forum on Computer Science-Technology and Applications, United States, 2009. [4] Bahrami H., Faez K. and Abdechiri M., Imperialist competitive algorithm using chaos theory for optimization (CICA). In 12th international conference on Computer modelling and simulation (UKSim), Cambridge, United Kingdom, 2010. [5] Niknam T., Fard E. T., Ehrampoosh S. and Rousta A, A new hybrid imperialist competitive algorithm on data clustering. Sadhana, Vol. 36, No.3, pp. 293, 2011. [6] Sabour M. H., Eskandar H. and Salehi P., Imperialist competitive ant colony algorithm for truss structures. world applied sciences journal, Vol. 12, No.1, pp. 94-105, 2011. [7] Lin J. L., Tsai Y. H., Yu C. Y. and Li M. S., Interaction enhanced imperialist competitive algorithms. Algorithms, Vol. 5, No.4, pp. 433-448, 2012. [8] Nozarian S. and Jahan MV., A novel memetic algorithm with imperialist competition as local search. In International Proceedings of Computer Science and Information Technology, Hong Kong, 2012. [9] Lin J. L., Cho C. W. and Chuan H. C., Imperialist competitive algorithms with perturbed moves for global optimization. Applied Mechanics and Materials, Vol. 284, pp. 3135-3139, 2013. [10] Lin J. L., Chuan H. C., Tsai Y. H. and Cho C. W., Improving imperialist competitive algorithm with local search for global optimization. In 7th Asia Modelling Symposium (AMS), Hong Kong, 2013. [11] Birbil Ş. İ. and Fang S. C., An electromagnetism-like mechanism for global optimization. Journal of global optimization, Vol. 2, No.3, pp. 263-282, 2003. [12] Hajihassani M., Armaghani D. J., Marto A. and Mohamad E. T., Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment, Vol. 74, No.3, pp. 873-886, 2015. [13] Rabiee A., Sadeghi M. and Aghaei J., Modified imperialist competitive algorithm for environmental constrained energy management of microgrids. Journal of Cleaner Production, Vol. 202, pp. 273-292, 2018. [14] Ali E. S., Speed control of induction motor supplied by wind turbine via imperialist competitive algorithm. Energy, Vol. 89, pp. 593-600, 2015. [15] Abd-Elazim S. M. and Ali E. S., Imperialist competitive algorithm for optimal STATCOM design in a multimachine power system. International Journal of Electrical Power & Energy Systems, Vol. 76, pp. 136-146, 2016. [16] Ghasemi M., Ghavidel S., Ghanbarian M. M. and Gitizadeh M., Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm. Information Sciences, Vol. 294, pp. 286-304, 2015. [17] Mikaeil R., Haghshenas S. S., Haghshenas S. S. and Ataei M., Performance prediction of circular saw machine using imperialist competitive algorithm and fuzzy clustering technique. Neural Computing and Applications, Vol. 29, No.6, pp. 283-292, 2018. [18] Ardalan Z., Karimi S., Poursabzi O. and Naderi B., A novel imperialist competitive algorithm for generalized traveling salesman problems. Applied Soft Computing, Vol. 26, pp. 546-555, 2015. [19] Aghajani A., Kazemzadeh R. and Ebrahimi A., A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm. Energy Conversion and Management, Vol. 121, pp. 232-240, 2016. [20] Sadeghi J., Mousavi S. M. and Niaki S. T., Optimizing an inventory model with fuzzy demand, backordering, and discount using a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, Vol. 40, No.15-16, pp. 7318-7335, 2016. [21] Nia A. R., Far M. H. and Niaki S. T., A hybrid genetic and imperialist competitive algorithm for green vendor managed inventory of multi-item multi-constraint EOQ model under shortage. Applied Soft Computing, Vol. 30, pp. 353-364, 2015. [22] Fathy A. and Rezk H., Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renewable Energy, Vol. 111, pp. 307-320, 2017. [23] Mirhosseini M. and Nezamabadi-pour H., BICA: a binary imperialist competitive algorithm and its application in CBIR systems. International Journal of Machine Learning and Cybernetics, Vol. 9, No.12, pp. 2043-2057, 2018. [24] Mehdinejad M., Mohammadi-Ivatloo B., Dadashzadeh-Bonab R. and Zare K., Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms. International Journal of Electrical Power & Energy Systems, Vol. 83 pp. 104-116, 2016. [25] Sadaei H. J., Enayatifar R., Lee M. H. and Mahmud M., A hybrid model based on differential fuzzy logic relationships and imperialist competitive algorithm for stock market forecasting. Applied Soft Computing, Vol. 40, pp. 132-149, 2016. [26] Hosseini-Moghari S. M., Morovati R., Moghadas M. and Araghinejad S., Optimum operation of reservoir using two evolutionary algorithms: imperialist competitive algorithm (ICA) and cuckoo optimization algorithm (COA). Water resources management, Vol. 29, No.10, pp. 3749-3769, 2015. [27] Chen Z., Yuan X., Yuan Y., Lei X. and Zhang B., Parameter estimation of fuzzy sliding mode controller for hydraulic turbine regulating system based on HICA algorithm. Renewable Energy, Vol. 133, pp. 551-565, 2019. [28] Taher S. A., Fini M. H. and Aliabadi S. F., Fractional order PID controller design for LFC in electric power systems using imperialist competitive algorithm. Ain Shams Engineering Journal, Vol. 5, No.1, pp. 121-135, 2014. [29] Xu S., Wang Y. and Lu P., Improved imperialist competitive algorithm with mutation operator for continuous optimization problems. Neural Computing and Applications, Vol. 28, No.7, pp. 1667-1682, 2017. [30] Zandieh M., Khatami A. R. and Rahmati S. H., Flexible job shop scheduling under condition-based maintenance: improved version of imperialist competitive algorithm. Applied Soft Computing, Vol. 58, pp. 449-464, 2017. [31] Al Khaled A. and Hosseini S., Fuzzy adaptive imperialist competitive algorithm for global optimization. Neural Computing and Applications, Vol. 26, No.4, pp. 813-825, 2015. [32] Padfield G. D., Helicopter flight dynamics: the theory and application of flying qualities and simulation modelling. John Wiley & Sons, New York, 2008. | ||
آمار تعداد مشاهده مقاله: 279 تعداد دریافت فایل اصل مقاله: 260 |