تعداد نشریات | 44 |
تعداد شمارهها | 1,312 |
تعداد مقالات | 16,134 |
تعداد مشاهده مقاله | 52,721,850 |
تعداد دریافت فایل اصل مقاله | 15,388,842 |
تشخیص سیگنال هدف در محدوده زمانی کارآمد سیگنال پتانسیل برانگیخته بینایی | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 1، دوره 50، شماره 2 - شماره پیاپی 92، مرداد 1399، صفحه 507-516 اصل مقاله (602.8 K) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
مائده آزادی مقدم1؛ سپیده جباری* 1؛ بهرام پرسه2 | ||
1گروه برق و کامپیوتر - دانشکده مهندسی - دانشگاه زنجان | ||
2دانشکده پزشکی - دانشگاه علوم پزشکی زنجان | ||
چکیده | ||
در مقاله حاضر یک روش جدید برای آشکارسازی سیگنالهای هدف و غیرهدف با استفاده از انتخاب بازههای زمانی مناسب پتانسیل برانگیخته بینایی جهت افزایش دقت طبقهبند و کاهش تعداد ویژگی معرفی شده است. روش پیشنهادی، با استفاده از کانالهای مؤثر و مشخص و طبقه بند SWLDA بر روی دادهگان P300-Speller مسابقات BCI2005 و دادههای ثبتشده توسط هافمن پیاده سازی گردید. روشهای موجود برای تعیین سیگنال حاوی P300، از بازه مشخصی در حدود یک ثانیه بعد از هر تحریک استفاده میکنند. در این مقاله، ابتدا محدوده زمانی مؤلفههای مختلف پتانسیل برانگیخته بینایی شامل N400، P300، N170، N100، P50 و N20 را بر اساس نتایج بهدستآمده از مقالات با پایه فیزیولوژی مشخص کردیم. سپس، بازهها توسط معیارهای F-Score و PCC امتیازبندی شدند. مؤلفههای مهم و تأثیرگذار پتانسیل برانگیخته بینایی با استفاده از الگوریتم SFS و طبقه بند SWLDA انتخاب شدند. بهمنظور بررسی توانمندی روش، عملکرد ترکیبات بهینه نسبت به طول زمانی کل سیگنال توسط دو طبقهبند بیزین و KNN نیز مقایسه شدند. نتایج آزمایش بر روی 10 شخص نشان داد که مهمترین مؤلفهها برای جداسازی سیگنالهای هدف و غیرهدف به ترتیب P300، N100 و N400 هستند. روش پیشنهادی دقت تشخیص خروجی را به میزان% 3.95 بهبود داد. | ||
کلیدواژهها | ||
انتخاب ویژگی زمانی؛ P300 Speller؛ مؤلفههای پتانسیل برانگیخته بینایی؛ طبقهبند SWLDA؛ الگوریتم SFS | ||
مراجع | ||
[1] B. Perseh and A. R. Sharafat, “An efficient P300-based BCI using wavelet features and IBPSO-based channel selection,” Journal of Medical Signals and Sensors, vol. 2, pp. 128-143, 2012. [2] N. Xu, X. Gao, B. Hong, X. Miao, Sh. Gao, and F. Yang, “BCI competition 2003-data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1067-1072, 2004. [3] M. Salvaris and F. Sepulveda, “Wavelets and ensemble of FLDs for P300 classification,” the 4th International IEEE/EMBS Conference on Neural Engineering, Turkey, 2009. [4] R. K. Chaurasiya, N. Londhe, and S. Ghosh, “An efficient P300 speller system for brain computer interface,” Signal Processing, Computing and Control (ISPCC), India, 2015. [5] L. Jessica, W. Speier, and X. Hu,“The effects of stimulus timing features on P300 speller performance,” Clinical Neurophysiology, vol. 124, no. 2, pp. 306-314, 2013. [6] H. Cecotti, R. Phlypo, B. Rivet, M. Congedo, E. Maby, and J. Mattout, “Impact of the time segment analysis for P300 detection with spatial filtering,” 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, Rome, 2010. [7] CS. Herrmann, A. Mecklinger, and E. Pfeifer, “Gamma responses and ERPs in a visual classification task,” Clinical Neurophysiology, vol. 110, no. 4, pp. 639-642, 1999. [8] S. Campanella, C. Montedoro, E. Streel, P. Verbanck, and V. Rosier, “Early visual components (P100, N170) are disrupted in chronic schizophrenic patients: an event-related potentials study,” Neurophysiol Clinique, vol. 36, no. 2, pp. 71-78, 2006. [9] B. Hong, F. Guo, T. Liu, X. Gao, and S. Gao, “N200-speller using motion-onset visual response,” Clinical Neurophysiology, vol.120, no. 9, pp. 1658-1666, 2009. [10] C. C. Duncan , R. J. Barry, J. F. Connolly, C. Fischer, P. T. Michie, R. Naatanen, J. Polich, I. Reinvang, and C. Petten, “Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400,” Clinical Neurophysiology, vol. 120, no. 11, pp. 1883-1908, 2009. [11] A. Marcano-Cedeño, J. Quintanilla-Domínguez, M. Cortina-Januchs, and D. Andina,“Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network,” Proceedings of the 36th Annual Conference of the IEEE Industrial Electronics Society, IECON 2010, pp. 2845–2850, 2010. [12] http://www.bbci.de/competition/iii/ [13] http://bci.epfl.ch/p300 [14] U. Hoffman, J. M. Vesin, T. Ebrahimi, and K. Diserens, “An efficient P300-based brain-computer interface for disabled subjects,” Journal of Neuroscience Methods, vol. 167, no. 1, pp. 115-125, 2008. [15] D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J. Mcfarland, T. M. Vaughan, and J. R. Wolpaw , “A comparison of classification techniques for the P300 Speller,” Journal of Neural Engineering,. vol. 3, no. 4, pp. 299-307, 2006. [16] G. D. Johnson and D. J. Krusienski, “Ensemble SWLDA classifiers for the P300 Speller,” International conference on Human-Computer Interaction, Springer 2009. [17] شیما کاشف و حسین نظامآبادیپور، «یک روش ترکیبی برای یافتن زیرمجموعه ویژگی مؤثر در دادههای چند برچسبی»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 3، صفحه 1327-1338، پاییز 1397. [18] مرتضی جهانتیغ و مصطفی چرمی، «افزایش صحت طبقهبندی سیگنالهای EEG تصور حرکتی با ترکیب منطقی طبقهبندها و با بهکارگیری الگوریتم ژنتیک و درختان تصمیم کوچک»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 3، صفحه 931-938، پاییز 1396. | ||
آمار تعداد مشاهده مقاله: 487 تعداد دریافت فایل اصل مقاله: 455 |