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Abstract The aim of this work is to prove the existence and uniqueness of the positive solu-
tions for a fractional boundary value problem by a parameterized integral boundary
condition with p-Laplacian operator. By using iteration sequence, the existence of
two solutions is proved. Also by applying a fixed point theorem on solid cone, the

result for the uniqueness of a positive solution to the problem is obtained. Two
examples are given to confirm our results.
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1. Introduction

Fractional derivatives as extensions of ordinary derivatives, are used in modeling of
many physical and engineering phenomena such as viscoelasticity, rheology, fluid flow,
diffusive transport, electrical networks, probability, electromagnetic theory, mechan-
ics, chemistry, and control system(See [10, 21, 22, 23]). Therefore, investigation of
the existence and uniqueness of the solutions of fractional initial and boundary value
problems has great importance. There are several papers including fractional bound-
ary value problem with various types of boundary conditions such as local, nonlocal,
etc. (see [2, 3, 4, 8, 9, 11, 12, 13, 18, 24]).
In the last two decades, in spite of that noticeable number of papers have been studied
about the existence and uniqueness of solutions for fractional boundary value problem
with p-Laplacian operator (see [5, 7, 14, 15, 16, 17, 19, 26]), however, a few number of
them concern about the p-Laplacian fractional boundary value problems with integral
boundary condition.
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Zhang et al. [27] in 2014, discussed about a singular fractional eigenvalue problem
with p-Laplacian operator including the Riemann-Stieltjes integral boundary condi-
tions

−Dβ
t (φp(D

α
t u)) (t) = λf(t, u(t)), 0 < t < 1,

u(0) = 0, Dα
t u(0) = 0, u(1) =

∫ 1

0

u(s)dB(s),

where Dβ
t and Dα

t are the Riemann-Liouville fractional derivatives, 1 < α ≤ 2,

0 < β ≤ 1, φp(s) = |s|p−2s, B is a bounded variation function and
∫ 1

0
u(s)dB(s) is

the Riemann-Stieltjes integral of u with respect to B, f(t;u) : (0; 1)× (0; 1) → [0; 1)
is a continuous function or has singularity at t = 0, 1 and x = 0. Authors have been
derived their results, by using the Schauder fixed point theorem and the upper and
lower solutions method.

Yunhong Li and Guogang Li [15] in 2016 investigated the existence and multiplicity
of positive solutions for p-Laplacian fractional boundary value problem,

Dβ
0+ (φp(D

α
0+x(t))) + λf(t, x(t)) = 0, 0 < t < 1,

φp(D
α
0+x(0))

(j) = 0, j = 1, 2, . . . ,m− 1,

φp(D
α
0+x(1)) =

∫ 1

0

h(t)φp(D
α
0+(x(t))dt,

x(i) = 0, i = 1, 2, . . . , n− 1,

x(0) =

∫ 1

0

k(t)x(t)dt,

where Dβ
0+ and Dα

0+ are the Caputo derivatives, m− 1 < β ≤ m,n− 1 < α ≤ n,m ≥
1, n ≥ 1, φp(s) = |s|p−2s and m+ n− 1 < α+ β ≤ m+ n. They used five functionals
fixed point theorem and obtained their results.

Zhang, et al. [26] in 2020 investigated the boundary value problem,

Dβ
0+φp(D

α
0+u(t)) + f(t, u(t), Dβ

0+u(t)) = 0, 0 < t < 1,

φp(D
α
0+u(0))

(j) = φp(D
α
0+u(1)) = 0, j = 1, 2, . . . , n− 1,

u(0) + u′(0) =

∫ 1

0

g0(s)u(s)ds+ a,

u(1) + u′(1) =

∫ 1

0

g1(s)u(s)ds+ b,

u(i)(0) = 0, j = 2, 3, . . . ,m− 1,

where 1 < m − 1 < α < m, 1 < n − 1 < β < n, α − β > 1, Dβ
0+ is the Caputo

fractional derivative, g0, g1 : [0, 1] → [0,+∞), f : [0, 1] × [0,+∞) → [0,+∞) are
continuous functions, a, b are disturbance parameters and φp(s) = |s|p−2s.
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According to the above works, we consider the mixed fractional boundary value
problem

Dβ
0+(φp(

cDα
0+u(t))) = f(t, u(t)), t ∈ [0, 1], 1 < α ≤ 2, 2 < β ≤ 3,

(φp(
cDα

0+u(0)))
′ =c Dα

0+u(0) =
c Dα

0+u(1) = u′(0) = 0, u(1) =

∫ η

0

u(t)dt,

(1.1)

where 0 ≤ η < 1 is a parameter, Dβ
0+ is the standard Riemann-Liouville fractional

derivative, cDα
0+ is the Caputo fractional derivative, and φp(s) = |s|p−2s, p > 1. We

present some necessary and sufficient conditions to prove existence and uniqueness
results for the problem.

The rest of this paper is structured as below. In section 2, some necessary pre-
liminaries from fractional calculus theory will be presented. Section 3 is devoted to
present the Green function of the problem and its properties. In section 4, main
results about the existence and uniqueness of positive solutions of the problem (1.1)
will be discussed and finally in section 5, two examples are delivered to confirm the
results.

2. Preliminaries

We begin by recalling some existing necessary facts in the literature of fractional
calculus. For more details, one can see [10, 20, 21, 22, 23].

Definition 2.1. Let s > 0 and g : (a,∞) → R be given continuous function, the
Riemann-Liouville fractional integral of order s of g is

Isa+g(τ) =
1

Γ(s)

∫ τ

0

(τ − z)s−1g(z)dz. (2.1)

In the same manner, the Riemann-Liouville fractional derivative of order s of g is

Ds
a+g(τ) =

1

Γ(1− s)

∫ τ

0

(τ − z)−sg(z)dz. (2.2)

If n ≤ s < n+ 1, we can extend this definition by

Ds
a+g(τ) =

dn

dτn
Dn−s+1g(τ) =

dn+1

dτn+1
I1−n
a+ g(τ).

In the same way, the Caputo fractional derivative of order s of function g is

cDs
a+g(τ) = D

−(n+1−s)
a+

dn+1

dτn+1
g(τ) =

1

Γ(n+ 1− s)

∫ τ

a

(τ − z)n−sg(n+1)(z)dz.

Lemma 2.2. Let g ∈ C(0, 1) ∩ L1(0, 1) and Ds
0+g(τ) ∈ [C(0, 1) ∩ L1(0, 1)]. Then

Is0+D
s
0+g(τ) = g(τ) + C1τ

s−1 + C2τ
s−2 + · · ·+ Cnτ

s−n,

where n = [s] + 1.

Proof. See [23] □
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Lemma 2.3. Assume that g ∈ Cn[0, 1].Then

Is0+
cDs

0+g(τ) = g(τ) + C1 + C2τ
2 + · · ·+ Cnτ

n,

where n = [s] + 1.

Proof. See [23] □
Definition 2.4. (See [6]) Let X be a real Banach Space and P ⊂ X be a cone. P is
solid if and only if P o ̸= ∅.

Definition 2.5. (See [6]) Let 0 ≤ θ < 1 be constant, the operator T : P o → P o is
called θ-concave operator if for all 0 < k < 1 and u ∈ P o, we have

T (ku) ≥ kθTu,

where P is a solid cone in a real Banach space X.

Theorem 2.6. (See [6]) Let 0 ≤ θ < 1 be a constant and X be a real Banach space.
If P ⊂ X be solid cone and T : P o → P o be an increasing θ-concave operator, then T
has a unique fixed point in P o.

3. Green Function

Lemma 3.1. ([1]) Assume that continuity holds for g in [0, 1] and 2 < β ≤ 3. Then
the fractional boundary value problem{

Dβ
0+y(t) = g(t), 0 < t < 1,

y(0) = y′(0) = y(1) = 0,
(3.1)

has a solution explained by

y(t) = −
∫ 1

0

H(t, s)g(s)ds, (3.2)

where

H(t, s) =
1

Γ(β)

{
tβ−1(1− s)β−1 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1
(1− s)β−1, 0 ≤ t ≤ s ≤ 1.

(3.3)

Lemma 3.2. Let h be a continuous function in [0, 1], 1 < α ≤ 2, 0 ≤ η ≤ 1. Then

u(t) = −
∫ 1

0

G(t, s)h(s)ds, (3.4)

is a solution of the fractional boundary value problem{
cDα

0+u(t) = h(t), t ∈ [0, 1],
u′(0) = 0, u(1) =

∫ η

0
u(t)dt,

(3.5)

where

G(t, s) =



(1−s)α−1−(t−s)α−1

Γ(α) +
η(1−s)α−1− 1

α (η−s)α

(1−η)Γ(α) , 0 ≤ s ≤ t ≤ η ≤ 1,
(1−s)α−1

Γ(α) +
η(1−s)α−1− 1

α (η−s)α

(1−η)Γ(α) , 0 ≤ t ≤ s ≤ η ≤ 1,
(1−s)α−1−(t−s)α−1

Γ(α) +
η(1−s)α−1− 1

α (η−s)α

(1−η)Γ(α) , 0 ≤ s ≤ η ≤ t ≤ 1,
(1−s)α−1

Γ(α) + η(1−s)α−1

(1−η)Γ(α) , 0 ≤ η ≤ t ≤ s ≤ 1.
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(3.6)

Proof. From Lemma 2.3 considering boundary value problem (3.5), we have

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ C0 + C1t.

Since u′(0) = 0, we have C1 = 0, and

u(1) =
1

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds+ C0 =

∫ η

0

u(t)dt,

so

C0 =

∫ η

0

u(t)dt− 1

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds,

and

u(t) =
1

Γ(α)

∫ t

0

(t−s)α−1h(s)ds+

∫ η

0

u(t)dt− 1

Γ(α)

∫ 1

0

(1−s)α−1h(s)ds. (3.7)

By integrating from 0 to η it follows that∫ η

0

u(t)dt =
1

αΓ(α)

∫ η

0

(η−s)αh(s)ds− η

Γ(α)

∫ 1

0

(1−s)α−1h(s)ds+η

∫ η

0

u(t)dt,

so ∫ η

0

u(t)dt =
1

αΓ(α)(1− η)

∫ η

0

(η−s)αh(s)ds− η

αΓ(α)(1− η)

∫ 1

0

(1−s)α−1h(s)ds.

Consequently

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds− 1

Γ(α)

∫ 1

0

(1− s)α−1

+
1

αΓ(α)(1− η)

∫ η

0

(η − s)αh(s)ds− η

αΓ(α)(1− η)

∫ 1

0

(1− s)α−1h(s)ds.

(3.8)

and this is precisely the assertion of the lemma. □

Lemma 3.3. The fractional boundary value problem (1.1) has a following unique
solution

u(t) =

∫ 1

0

G(t, s)φq

(∫ 1

0

H(s, τ)f(τ, u(τ))dτ

)
ds (3.9)

Proof. Let h(t) = φq(y(t)), g(t) = −f(t, u(t)), then from Lemma 3.1 we obtain

y(t) =

∫ 1

0

H(t, s)f(s, u(s))ds,

h(t) = φq(y(t)) = φq

(∫ 1

0

H(t, s)f(s, u(s))ds

)
.
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Hence from Lemma 3.2 we conclude that

u(t) =

∫ 1

0

G(t, s)h(s)ds =

∫ 1

0

G(t, s)φq

(∫ 1

0

H(s, τ)f(τ, u(τ))dτ

)
ds.

□
Lemma 3.4. Let H(t, s) is a function that defined by (3.3), then

(1) H : [0, 1] × [0, 1] → R is a continuous function and H(t, s) > 0 for all 0 <
t, s < 1;

(2) max0≤t≤1 H(t, s) ≤ s(1−s)β−1

Γ(β−1)

Proof. We first prove the statement (1). Clearly H(t, s) is continuous on [0, 1]× [0, 1]
and obviously H(t, s) ≥ 0 for s ≥ t.
Let 0 ≤ s ≤ t ≤ 1, so

tβ−1(1− s)β−1 − (t− s)β−1 = tβ−1(1− s)β−1

(
1−

(
1− s

t

1− s

)β−1
)

≥ 0.

Hence for 0 ≤ t, s ≤ 1, H(t, s) ≥ 0, and H(t, s) > 0 for 0 < t, s < 1.
Statement (2) is obtained directly from [25] that states:

tβ−1(1− t)s(1− s)β−1

Γ(β)
≤ H(t, s) ≤ s(1− s)β−1

Γ(β − 1)
.

□
Lemma 3.5. Let G(t, s) is defined by (3.6), then

(1) G : [0, 1]× [0, 1] → R is continuous and G(t, s) > 0 for all 0 < t, s < 1;

(2) max0≤t≤1 G(t, s) ≤ 1
1−η

(1−s)α−1

Γ(α)

Proof. Note that, similar the proof of statement (1) of Lemma 3.4, it can be shown

that g(t, s) = (1−s)α−1−(t−s)α−1

Γ(α) > 0 for t, s ∈ (0, 1). One can see that g(t, s) is

increasing for t ≤ s and decreasing for s ≤ t, with respect to t. Hence

max
0≤t≤1

g(t, s) = g(s, s) =
(1− s)α−1

Γ(α)
, s ∈ (0, 1).

Now for proving the statement (1), let 0 < s ≤ t ≤ η ≤ 1, from the definition of
G(t, s) we have

G(t, s) =
(1− s)α−1 − (t− s)α−1

Γ(α)
+

η(1− s)α−1 − 1
α (η − s)α

(1− η)Γ(α)

=
(1− s)α−1 − (t− s)α−1

Γ(α)
+

η(1− s)α−1 − 1
α (η − s)(η − s)α−1

(1− η)Γ(α)

≥ (1− s)α−1 − (t− s)α−1

Γ(α)
+

η − s

α(1− η)

(1− s)α−1 − (η − s)α−1

Γ(α)

= g(t, s) +
η − s

α(1− η)
g(η, s)

> 0.
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By using an analogous arguments, we have G(t, s) > 0 for 0 ≤ t ≤ s ≤ η ≤ 1 or
0 ≤ s ≤ η ≤ t ≤ 1 or 0 ≤ η ≤ t ≤ s ≤ 1.
Now we prove statement (2).
For 0 < s ≤ t ≤ η ≤ 1 or 0 ≤ s ≤ η ≤ t ≤ 1 one has

max
0≤t≤1

G(t, s) = max
0≤t≤1

(
(1− s)α−1 − (t− s)α−1

Γ(α)
+

η(1− s)α−1 − 1
α (η − s)α

(1− η)Γ(α)

)
≤ g(s, s) +

η

1− η

(1− s)α−1

Γ(α)
=

1

1− η

(1− s)α−1

Γ(α)

For 0 ≤ t ≤ s ≤ η ≤ 1, one has

max
0≤t≤1

G(t, s) = max
0≤t≤1

(
(1− s)α−1

Γ(α)
+

η(1− s)α−1 − 1
α (η − s)α

(1− η)Γ(α)

)
≤ g(s, s) +

η

1− η

(1− s)α−1

Γ(α)
=

1

1− η
g(s, s) =

1

1− η

(1− s)α−1

Γ(α)

For the case 0 ≤ η ≤ t ≤ s ≤ 1, there is nothing to prove. □

4. Main Result

Consider the Banach space E = C[0, 1] equipped with the maximum norm ∥u∥ =
max0≤t≤1 |u(t)| and define the cone P ⊂ E by P = {u ∈ E : u(t) ≥ 0, 0 ≤ t ≤ 1}
with its interior P o = {u ∈ E : u(t) > 0, 0 ≤ t ≤ 1}. We are in a position to prove
the main results. For this aim, we notice the following assumptions

(H1) There exists a constant λ > 0 such that f(t, u1) ≤ f(t, u2) for any 0 ≤ u1 ≤
u2 ≤ λ;

(H2) max0≤t≤1 f(t, λ) ≤ φp(λK);
(H3) f(t, 0) ̸= 0 for 0 ≤ t ≤ 1.
(H4) f(t, u) is a nondecreasing function with respect to the second variable;
(H5) there exists 0 ≤ θ < 1 such that f(t, ku) ≥ (φp(k))

θf(t, u(t)) for any 0 < k <
1, 0 < u < ∞

In view of Lemma 3.3 we know the solutions of fractional boundary value problem
(1.1) are the fixed points of the operator

(Tu)(t) =

∫ 1

0

G(t, s)φq

(∫ 1

0

H(s, τ)f(τ, u(τ))dτ

)
ds. (4.1)

In order to prove the existence of the solutions for problem (1.1), the operator (4.1)
must be completely continuous.

Theorem 4.1. Operator T : P → E defined by (4.1) is completely continuous oper-
ator.

Proof. Since functions G(t, s),H(t, s), f(t, u) and φq(s) are continuous in their do-
mains, continuity of the operator T is concluded. Now by applying the Lebesgue
dominated convergence and Arzela-Ascoli theorems one can see easily T : P → P is
completely continuous.

□
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Now let us for convenience introduce the notation

K =

[∫ 1

0

1

1− η

(1− s)α−1

Γ(α)
φq

(∫ 1

0

τ(1− τ)β−1

Γ(β − 1)
dτ

)
ds

]−1

Theorem 4.2. Assume (H1), (H2) and (H3) hold. Then problem (1.1) has two
positive solutions u∗ and v∗ with the following properties.

• 0 ≤ ∥v∗∥ ≤ λ and limn→∞ Tnv0 = v∗, where v0(t) = 0
• 0 ≤ ∥u∗∥ ≤ λ and limn→∞ Tnu0 = u∗, where u0(t) = λ

Proof. Define Pλ = {u ∈ P : ∥u∥ ≤ λ}. We show that TPλ ⊂ Pλ. Let u ∈ Pλ, then
0 ≤ u(t) ≤ ∥u∥ ≤ λ. By assumptions (H1) and (H2), we have

0 ≤ f(t, u(t)) ≤ f(t, λ) ≤ φp(λK).

Let u ∈ Pλ, in view of Theorem 4.1, we conclude that Tu ∈ P , and hence

∥Tu∥ = max

∫ 1

0

G(t, s)φq

(∫ 1

0

H(s, τ)f(τ, u(τ)dτ

)
ds

≤
∫ 1

0

1

1− η

(1− s)α−1

Γ(α)
φq

(∫ 1

0

φp(λK)
τ(1− τ)β−1

Γ(β − 1)
dτ

)
= λK

∫ 1

0

1

1− η

(1− s)α−1

Γ(α)
φq

(∫ 1

0

τ(1− τ)β−1

Γ(β − 1)
dτ

)
ds

= λ.

So Tu ∈ Pλ. Thus, we get TPλ ⊂ Pλ.
Assume u0(t) = λ and 0 ≤ t ≤ 1, then ∥u0∥ = λ and u0 ∈ Pλ. Similarly if u1(t) =
Tu0(t), then u1 ∈ Pλ. Now we define

un+1 = Tun = Tn+1u0, n = 0, 1, 2, . . . .

Since TPλ ⊂ Pλ, One has un ∈ Pλ(n = 0, 1, 2, . . .). From Theorem 4.1, T is a compact
operator; we show that {un}∞n=1 has a subsequence like {unk

}∞k=1 that is convergence,
so there exists u∗ ∈ Pλ such that unk

→ u∗ as k → ∞. In view of the definition of T
and (H1), for any t ∈ [0, 1], we have

u1(t) = (Tu0)(t)

=

∫ 1

0

G(t, s)φq

(∫ s

0

H(s, τ)f(τ, u0(τ)dτ

)
ds

≤
∫ 1

0

1

1− η

(1− s)α−1

Γ(α)
φq

(∫ 1

0

φp(λK)
τ(1− τ)β−1

Γ(β − 1)
dτ

)
= λK

∫ 1

0

1

1− η

(1− s)α−1

Γ(α)
φq

(∫ 1

0

τ(1− τ)β−1

Γ(β − 1)
dτ

)
ds

= λ.

So,

u2(t) = Tu1(t) ≤ Tu0(t) = u1(t), 0 ≤ t ≤ 1.
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One can see easily un+1 ≤ un for 0 ≤ t ≤ 1, n = 0, 1, 2, . . . . Thus by use of induction
for n = 0, 1, 2, . . ., 0 ≤ t ≤ 1, we have un+1 ≤ un. So there exists u∗ ∈ Pλ such that
un → u∗ as n → ∞. Since the operator T is continuous and un+1 = Tun, we get
Tu∗ = u∗.
Now assume v0 = 0, 0 ≤ t ≤ 1, then v0 ∈ Pλ. Let v1 ∈ Pλ. We define

vn+1 = Tvn = Tn+1v0, n = 0, 1, 2, . . .

We know T : Pλ → Pλ, so for n = 0, 1, 2, . . . vn ⊂ Pλ. Applying completely continuity
of T , we show that {v}∞n is a sequentially compact set.
Since v1(t) = Tv0(t) = (T0)(t) ≥ 0, 0 ≤ t ≤ 1, one has

v2(t) = Tv1(t) ≥ (T0)(t) = v1(t), 0 ≤ t ≤ 1.

By using analogues argument about un, one can see

vn+1 ≥ vn, 0 ≤ t ≤ 1, n = 0, 1, 2, . . .

Hence, there exists v∗ ∈ Pλ such that vn → v∗ as n → ∞. Applying the continunity
of T and vn+1 = Tvn, we get Tv∗ = v∗.
Now we show that zero function is not satisfying problem (1.1). This is concluded
from the fact that f(t, 0) ̸= 0, 0 ≤ t ≤ 1. Thus ∥u∗∥ > 0 and ∥v∗∥ > 0. Consequently
the fractional boundary value problem (1.1) has two positive solutions u∗ and v∗. □

The next result is obtained by using the Theorem 2.6.

Theorem 4.3. Assume (H4) and (H5) hold. Then there is only one positive solution
for the fractional boundary value problem (1.1).

Proof. Note that P = {u ∈ E : u(t) ≥ 0, 0 ≤ t ≤ 1} is a normal solid cone in C[0, 1]
with the interior

P o = {u ∈ C[0, 1] : u(t) > 0 on [0, 1]}. (4.2)

Also let T be the operator defined with (4.1). Then T : P o → P o. It is obvious that
T is an increasing operator, we show that T is a θ-concave operator. (H5) implies

T (ku)(t) =

∫ 1

0

G(t, s)φq

(∫ 1

0

H(s, τ)f(τ, ku(τ))dτ

)
ds

≥
∫ 1

0

G(t, s)φq

(∫ 1

0

H(s, τ)φp(k
θ)f(τ, u(τ))dτ

)
ds

= kθ
∫ 1

0

G(t, s)φq

(∫ 1

0

H(s, τ)f(τ, u(τ))dτ

)
ds

= kθ(Tu)(t).

That is T is a θ-concave operator. In view of Theorem 2.6, T has a unique fixed
point u∗ in P o, that it is the unique solution of fractional boundary value problem
(1.1). □
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5. Examples

Example 5.1. Let p = 3
2 , α = β = 3

2 , η = 1
2 . Consider the following boundary value

problem

D
5
2

0+(φ 3
2
(cD

3
2

0+u(t))) = f(t, u(t)), 0 < t < 1,

(φ 3
2
(cD

3
2

0+u(0)))
′ = u(0) =c D

3
2

0+u(0) =
c D

3
2

0+u(1) = 0,

u(1) =
∫ 1

2

0
u(t)dt,

(5.1)

where

f(t, u(t)) =
1

30
(1 + uet + u

3
2 ).

A simple computation shows that K ≈ 0.1773. Now we choose λ = 5 and f(t, u)
satisfies

(1) f(t, u1) ≤ f(t, u2) for any 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ 5;
(2) max0≤t≤1 f(t, λ) = f(1, 5) ≈ 0.858 < φ 3

2
(λK) ≈ 0.9412;

(3) f(t, 0) = 1
30 ̸= 0 for 0 ≤ t ≤ 1.

Then in view of Theorem 5.1 we conclude that the problem (5.1) has two positive
solutions u∗ and v∗ such that

0 < ∥u∗∥, lim
n→∞

Tnu0 = u∗, where u0(t) = 5,

0 < ∥v∗∥, lim
n→∞

Tnv0 = v∗, where u0(t) = 0.

Example 5.2. Let p = 3
2 , α = β = 3

2 , η = 1
2 . Consider fractional boundary value

problem

D
5
2

0+(φ 3
2
(cD

3
2

0+u(t))) = f(t, u(t)), 0 < t < 1,

(φ 3
2
(cD

3
2

0+u(t)))
′ = u(0) =c D

3
2

0+u(0) =
c D

3
2

0+u(1) = 0,

u(1) =
∫ 1

2

0
u(t)dt,

(5.2)

where f(t, u(t)) = t
√
u(t).

It can be seen that (5.1) satisfies condition (H4). We show that (H5) holds. Let
θ = 1

2 , then

f(t, ku(t)) = t
√
ku(t) = (k)

1
2 f(t, u(t)) > φ 3

2
(k)

1
2 f(t, u(t))

So (H5) satisfied. Thus by Theorem 4.3, fractional boundary value problem (5.2) has
a unique solution.

6. Conclusion

In this work, despite the integral boundary condition with a parameter, we were
able to prove the existence of positive solutions to the fractional boundary value
problem. The presented examples showed how to apply proven theorems.
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