- [1] S. Abbasbandy and A. Shirzadi, Homotopy analysis method for multiple solutions of the frac- tional Sturm-Liouville problems, Numerical Algorithms, 54(4) (2010), 521–532.
- [2] Q. M. Al-Mdallal, An efficient method for solving fractional Sturm–Liouville problems, Chaos, Solitons & Fractals, 40(1) (2009),183–189.
- [3] Q. M. Al-Mdallal, On the numerical solution of fractional Sturm–Liouville problems, Interna- tional Journal of Computer Mathematics, 87(12) (2010), 2837–2845.
- [4] Q. M. Al-Mdallal, On fractional-legendre spectral Galerkin method for fractional Sturm– Liouville problems, Chaos, Solitons & Fractals, 116 (2-18), 261–267.
- [5] Q. M. Al-Mdallal, M. Al-Refai, M. Syam, and M. K. Al-Srihin, Theoretical and computational perspectives on the eigenvalues of fourth-order fractional Sturm–Liouville problem, International Journal of Computer Mathematics, 95(8) (2018), 1548–1564.
- [6] T. S. Aleroev, The Sturm-Liouville problem for a second-order differential equation with frac- tional derivatives in the lower terms, Differentsial’nye Uravneniya, 18(2)( 1982), 341–343.
- [7] A. Ansari, On finite fractional Sturm–Liouville transforms, Integral Transforms and Special Functions, 26(1) (2015), 51–64.
- [8] A. Ansari, Some inverse fractional Legendre transforms of gamma function form, Kodai Math- ematical Journal, 38(3) (2015),658–671.
- [9] P. J. Collins, Differential and integral equations. , Oxford University Press, 2006.
- [10] F. Dastmalchi Saei, S. Abbasi, and Z. Mirzayi, Inverse laplace transform method for multiple solutions of the fractional sturm-liouville problems, Computational Methods for Differential Equations, 2(1) (2014), 56–61.
- [11] M. Dehghan and A. Mingarelli, Fractional Sturm-Liouville eigenvalue problems ii, arXiv preprint arXiv:1712.09894, 2017.
- [12] M. Dehghan and A. B. Mingarelli, Fractional Sturm–Liouville eigenvalue problems i, Re- vista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matem´aticas, 114(2)(2020),1–15.
- [13] M. H. Derakhshan and A. Ansari, Fractional Sturm–Liouville problems for weber fractional derivatives, International Journal of Computer Mathematics, 96(2) (2019),217–237.
- [14] A. Erd´elyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, New York, 1, 1955.
- [15] S. Eshaghi and A. Ansari, Finite fractional Sturm–Liouville transforms for generalized frac- tional derivatives, Iranian Journal of Science and Technology, Transactions A: Science, 41(4) (2017), 931–937.
- [16] R. Gorenflo and A. Kilbas, Mittag-Leffler functions, related topics and applications.
- [17] M. A. Hajji, Q. M. Al-Mdallal, and F. M. Allan, An efficient algorithm for solving higher-order fractional Sturm–Liouville eigenvalue problems, Journal of Computational Physics, 272 (2014), 550–558.
- [18] A. Kilbas, Theory and applications of fractional differential equations.
- [19] M. Klimek and O. P. Agrawal, Fractional Sturm–Liouville problem, Computers & Mathematics with Applications, 66(5) (2013), 795–812.
- [20] M. Klimek, T. Odzijewicz, and A. B. Malinowska, Variational methods for the fractional Sturm– Liouville problem, Journal of Mathematical Analysis and Applications, 416(1) (2014), 402–426.
- [21] F. Mainardi, Fractional calculus: In Fractals and fractional calculus in continuum mechanics, Springer, 1997, 291–348.
- [22] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathe- matical models, World Scientific, 2010.
- [23] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John-Wily and Sons Inc. New York, 1993.
- [24] G. M. Mittag-Leffler, Sur la nouvelle fonction eα(x), CR Acad. Sci. Paris, 137(2) (1903), 554– 558.
- [25] A. Neamaty, R. Darzi, A. Dabbaghian, and J. Golipoor, Introducing an iterative method for solving a special FDE , International Mathematical Forum, 4 (2009), 1449–1456.
- [26] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, frac- tional differential equations, to methods of their solution and some of their applications, Else- vier, 1998.
- [27] M. I. Syam, Q. M. Al-Mdallal, and M. Al-Refai, A numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems, Communications in Numerical Analysis, (2017), 217–232.
- [28] M. Zayernouri and G. E. Karniadakis, Fractional Sturm–Liouville eigen-problems: theory and numerical approximation , Journal of Computational Physics, 252 (2013), 495–517.
|