- [1] A. K. Aziz and J. L. Liu, A weighted least squares method for the backward-forward heat equa- tion, SIAM J. Numer. Anal., 28 (1991), 156-167.
- [2] B. Baxter, Preconditioned conjugate gradients, radial basis functions, and Toeplitz matrices, Comput. Math. Appl., 43 (2002), 305-318.
- [3] R. K. Beatson, J. B. Cherrie, and C. T. Mouat, Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration, Adv. Comput. Math., 11 (1999), 253-270.
- [4] W. Beatson, J. B. Cherrie, and T. Mouat, Fast solution of the radial basis function interpolation methods: domain decomposition methods, SIAM J. Sci. Comp., 22 (2000), 1717-1740.
- [5] M. D. Buhmann, Radial Basis Functions: Theory and Implementations , Cambridge University Press, Cambridge, 2003.
- [6] A. H. D. Cheng, M. A. Golberg, E.J. Kansa, and T. Zammito, Exponential convergence and h-c Multiquadric collocation method for partial differential equations, Numer. Meth. Part. Differ. Equat., 19 (2003), 571-594.
- [7] X. L. Cheng and J. Sun. Iterative methods for the forward-backward heat equation, J. Comput. Math., 23 (2005), 419-424.
- [8] D. S. Daoud, Overlapping Schwarz waveform relaxation method for the solution of the forward- backward heat equation,, J Comput. Appl. Math., 208(2) (2007), 380-390.
- [9] M. Dehghan, M. Abbaszadeha, and A. Mohebbib, The numerical solution of nonlinear high dimensional generalized BenjaminBonaMahonyBurgers equation via the meshless method of radial basis functions, Computers and Mathematics with Applications, 68 (2014), 212-237.
- [10] M. Dehghan, M. Abbaszadeh, and A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numerical Algorithms, 73(2) (2016), 445-476.
- [11] G. E. Fasshuaer, On choosing optimal shape parameters for RBF approximation, Numerical Algorithms, 45(1) (2007), 345368.
- [12] R. Franke, Scattered data interpolation: test of some methods, Comput. Math. Appl., 38 (1982), 595-610.
- [13] G .E. Fasshauer, On smoothing for multilevel approximation with radial basis functions, in Approximation Theory, IX, Vol. 2: Computational Aspects, C.K. Chui and L.L. Schumaker (eds.), Vanderbil University Press, (1998), 55-62.
- [14] G. E. Fasshuaer, Solving differential equations with radial basis functions: multilevel methods and smoothing, Advances in Computational Mathematics, 11(2) (1999), 139-159.
- [15] G. E. Fasshuaer, Meshfree approximation methods with MATLAB, Interdisciplinary Mathe- matical Sciences, 6 (2007).
- [16] A. J. Ferreira, P. A. Martins, and C. M. Roque, Solving time-dependent engineering problems with multiquadrics, Journal of Sound and Vibration, 280 (2005), 1595-1610.
- [17] R. Franke, Scattered data interpolation: test of some methods, Comput. Math. Appl., 38 (1982), 595-610.
- [18] J. A. Franklin and E.R. Rodemich, Numerical analysis of an elliptic-parabolic partial dierential equation, SIAM J. Numer. Anal. 5 (1968) 680716.
- [19] D. A. French, Continuous Galerkin finite element methods for a forward-backward heat equation, Numer. Methods Partial Differential quations, 15 (1999), 257-265.
- [20] H. D. Han and D. S. Yin, A non-overlap domain decomposition method for the forward-backward heat equation, J. Comput. Appl. Math., 159 (2003), 35-44.
- [21] R. L. Hardy, Theory and applications of the multiquadric-biharmonic method: 20 years of discovery, Computers and Mathematics with Applications, 19 (1990), 163-208.
- [22] E. J. Kansa, Multi-quadrics - a scattered data approximation scheme with applications to com- putational fluid dynamics, Comput. Math. Appl., 19 (1990), 147-161.
- [23] A. Karageorghis, M. A. Jankowska, and C.S. Chen, Kansa-RBF algorithms for elliptic problems in regular polygonal domains, Numer. Algorithms, 79 (2018), 399-421.
- [24] C. K. Lee, X. Liu, and S. C. Fan, Local multiquadric approximation for solving boundary value problems, Computational Mechanics, 30 (2003), 396-409.
- [25] L. Ling and E. J. Kansa, A least-squares preconditioner for radial basis functions collocation methods, Adv. Comput. Math., 23 (2004), 31-54.
- [26] L. Ling and E. J. Kansa, Preconditioning for radial basis functions with domain decomposition methods, MATH. COMPUT. MODEL., 40 (2004), 1413-1427.
- [27] L. Ling and Y. C. Hon, Improved numerical solver for Kansas method based on affine space decomposition, Eng. Anal. Boundary Elem., 29 (2005), 1077-1085.
- [28] G. R. Liu Mesh Free Methods, Moving Beyond the Finite Element Method, CRC Press, New York, 2002.
- [29] G. R. Liu and Y. T. Gu, An introduction to meshfree methods and their programming,, Springer, Netherlands, 2005.
- [30] H. Lu and J. Maubach, A finite element method and variable transformations for a forward- backward heat equation, Numer. Math., 81 (1998), 249-272.
- [31] W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory. Appl, 4 (1988), 77-89.
- [32] W. R. Madych, Miscellaneous error bounds for multiquadric and related interpolators, Comput. Math. Appl., 24 (1992), 121-38.
- [33] D. B. Melrose, Plasma astrophysics: non-thermal processes in difuse magnetized plasmas, Vol. 1: The emission, absorption, and transfer of waves in plasmas. Vol. 2: Astrophysical application, Gordon and Breach, New York, (1978).
- [34] A. F. Messiter and R .L. Enlow, A model for laminar boundary-layer ow near a separation point, SIAM J. Appl. Math., 25 (1973), 655670.
- [35] F. Paronetto, Elliptic approximation of forward-backward parabolic equations, Commun. Pur. Appl. Anal., 19(2) (2020), 1017-1036.
- [36] W. R. C. Phillips and J. T. Ratnanather, The outer region of a turbulent boundary layer, Phys. Fluids A, Fluid dynamics 2, (1990), 427.
- [37] C. Shu, H. Ding, and K. S. Yeo, Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 192(3) (2003), 941-954.
- [38] J. Sun and X. L. Cheng , Iterrative methods for a forward-backward heat equation in two- dimension, Appl. Math. J. Chinese Univ., 25(1) (2010), 101-111.
- [39] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, 4(1) (1995), 389-396.
|