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1. Introduction

The area of partial differential equations (PDE’s) has been growing steadily since
middle of the 19th century. PDE’s can be used to describe a wide variety of phenom-
ena such as sound, heat, diffusion, electrostatics, electrodynamics, fluid dynamics,
elasticity, or quantum mechanics (for example see [23–30]).

The boundary value problems with p(x)-biharmonic operator have been studied by
many researchers [1–3,14–20,31,33,36].

In this paper we consider the following problem{
∆2
p(x)u+ |u|s−2u

|x|2s = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where

• Ω ⊂ RN (N ≥ 5) is a bounded domain with smooth boundary.
• ∆2

p(x)u = ∆(|∆u|p(x)−2∆u), denotes p(x)-biharmonic operator.

• p(x) ∈ C(Ω̄), 1 < s < p(x) <∞ and
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• q(x) ∈ C(Ω̄) with 1 < q(x) < p∗(x) where

P ∗(x) :=

{
Np(x)
N−p(x) p(x) < N,

∞ p(x) ≥ N.

• λ is strictly positive real parameter and
• The Carathéodory function f : Ω× R→ R satisfies

|f(x, t)| ≤ a1 + a2|t|q(x)−2, for all (x, t) ∈ Ω× R, (1.2)

where a1, a2 are two positive constants.

Wang [34], considered the existence of solutions for the following biharmonic prob-
lem 

∆2u = λ |u|
2∗∗−2

|x|s + βa(x)|u|r−2u = f(x, u) x ∈ RN ,

u ∈ D2,2
0 (RN ) N ≥ 5,

where D2,2
0 (RN ) is the closure of C∞(RN ), 2∗∗(s) = 2(N−s)

N−4 , 0 ≤ s < 4 and 1 < r <
2∗∗.

In 2013, Xie [35] studied the following problem{
∆2
pu− λ

|u|p−2u
|x|2p = f(x, u) in Ω,

u = ∂u
∂x = 0 on ∂Ω,

where 1 < p < N
2 and 0 ≤ λ < [N(p−1)(N−2p)

p2 ]p.

In this work, we investigate the problem (1.1) and prove the existence of weak
solutions, by applying Hardy’s inequality, S+-condition and Palais-Smale condition
(or (PS) condition). Due to do this, we recall the following definitions.

Definition 1.1. [21] Let 1 < s < N
2 , for all u ∈ X∫

Ω

|u(x)|s

|x|2s
dx ≤ 1

H

∫
Ω

|∆u(x)|sdx, (1.3)

is called the classical Hardy’s inequality, where H := (N(s−1)(N−2s)
s2 )s.

Definition 1.2. [32] Let X be a reflexive real Banach space. If the assumptions
lim supn→+∞〈T (un)− T (u0) un − u0〉 ≤ 0 and un ⇀ u0 in X imply un → u0 in X,
then the operator T : X → X∗ is said to satisfy the (S+) condition.

Definition 1.3. [4] Let X be a Banach space and Φ : X → R a C1-functional. Φ is
said to satisfy the Palais-Smale condition (denoted by (PS)), if any sequence un in
X such that Φ(un) is bounded and Φ′(un)→ 0 admits a convergent subsequence.

As before

Lp(x)(Ω) =

{
u : Ω→ R;u is measurable and

∫
Ω

|u(x)|p(x)
dx <∞

}
,
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and it is endowed with

‖ϕ‖Lp(x) := inf

{
λ > 0;

∫
Ω

∣∣∣∣ϕ(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Also

W 1,p(x)(Ω) :=
{
ϕ ∈ Lp(x); |∇ϕ| ∈ Lp(x)

}
,

and its norm is defined by

‖ϕ‖W 1,p(x) := ‖ϕ‖Lp(x) + ‖|∇ϕ|‖Lp(x) .

Finally

W
1,p(x)
0 (Ω) :=

{
ϕ ∈W 1,p(x); ϕ|∂Ω = 0

}
.

Set p− := inf
x∈Ω

p(x) and p+ := sup
x∈Ω

p(x). Let X := W
1,p(x)
0 (Ω)

⋂
W 2,p(x) endowed with

the norm

‖u‖ = ‖|∆u|‖Lp(x) ,

by the compact embedding X ↪→ Lq(x)(Ω), there exists a Cq > 0 such that

‖u‖Lq(x) ≤ Cq‖u‖, (1.4)

where 1 < q(x) < p∗(x) for all x ∈ Ω (see [11, Proposition 2.5 ]).
Suppose Φ : X → R is a functional defined by

Φ(u) =

∫
Ω

(
1

p(x)
|∆u|p(x) +

|u|s

s|x|2s
)dx, (1.5)

where 1 < s < p− ≤ p(x) ≤ p+ <∞. By [22] and [11, Theorem 3.1],

• Φ is a continuously Gâteaux differentiable functional and for u, v ∈ X

Φ′(u)(v) =

∫
Ω

(|∆u|p(x)−2|∆u||∆v|+ |u|
s−2uv

|x|2s
)dx. (1.6)

• Φ′ : X → X∗ is strictly monotone, homeomorphism and satisfies the (S+)
condition.

Proposition 1.4. [10, Theorem 1.3] Assume ϕ ∈W 1,p(x)
0 and ρp(ϕ) :=

∫
Ω
|ϕ(x)|p(x)dx.

Then

(i) ‖ϕ‖ < 1(= 1, > 1) iff ρp(|∆ϕ|) < 1(= 1 :> 1).

(ii) ‖ϕ‖ > 1, then 1
p+ ‖ϕ‖p

− ≤ Φ(ϕ) ≤ 1
p− ‖ϕ‖

p+

+
∫

Ω
|ϕ|s
s|x|2s dx.

(iii) ‖ϕ‖ < 1, then 1
p+ ‖ϕ‖p

+ ≤ Φ(ϕ) ≤ 1
p− ‖ϕ‖

p− +
∫

Ω
|ϕ|s
s|x|2s dx.

Assume f : Ω× R→ R is a Carathéodory function and for all (x, ξ) ∈ X, define

F (x, ξ) :=

∫ ξ

Ω

f(x, t)dt. (1.7)

• For u ∈ X, define Ψ : X → R by

Ψ(u) :=

∫
Ω

F (x, u(x))dx. (1.8)
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• Ψ is continuously Gâteaux differentiable functional, has compact derivative
and

Ψ′(u)(v) :=

∫
Ω

f(x, u(x))v(x)dx, (1.9)

for u, v in X (see [22]).
• Define I := Φ− λΨ. Notice that I ′(u) = 0 implies for u, v ∈ X,∫

Ω

(|∆u|p(x)−2|∆u||∆v|+ |u|
s−2uv

|x|2s
)dx = λ

∫
Ω

f(x, u(x))v(x)dx. (1.10)

So the weak solutions of the problem (1.1) are the critical points of I.

For x ∈ Ω, set

δ(x) := sup {δ > 0 : B(x, δ) ⊆ Ω} , (1.11)

D := sup
x∈Ω

δ(x). (1.12)

Clearly, there exists x0 ∈ Ω such that B(x0, D) ⊆ Ω.
Also, for a > 0 and q(x) ∈ C(Ω) with

1 < q− := inf
x∈Ω

q(x) < q(x) < q+ := sup
x∈Ω

q(x) < 0,

we have:

[a]q(x) := max
{
aq
−
, aq

+
}
,

[a]q(x) := min
{
aq
−
, aq

+
}
,

where x ∈ Ω. Let r > 0, set

ω :=
1

r

{
a1C1(p+)

1

p− [r]
1
p +

a2

q−
[Cq]

q(p+)
q+

p− [[r]
1
p ]q
}

(1.13)

where a1, a2 are positive numbers and C1, Cq are ordinary embedding constants X ↪→
L1(Ω) and X ↪→ Lq(x)(Ω).

2. Existence of weak solutions

Here the existence of multiple weak solutions of the problem (1.1) in different cases
are proved and some examples are presented.

2.1. A weak solutions. In order to study the existence of weak solution of the
problem (1.1), we recall the following theorem.

Theorem 2.1. [7] Assume X is a real Banach space, Φ,Ψ : X → R are two
continuously Gâteaux differentiable functional such that

inf
x∈Ω

Φ(x) = Φ(0) = Ψ(0) = 0.

Suppose there exist r > 0 and x ∈ X with 0 < Φ(x) < r such that

• (i)
supΦ(x)<r Ψ(x)

r < Ψ(x)
Φ(x) .



822 R. M. KHANGHAHI AND A. RAZANI

• (ii) for all λ ∈ Λ :=] Φ(x)
Ψ(x) ,

r
supΦ(x)<r Ψ(x) [, Iλ := Φ − λΨ satisfies (PS)[r] con-

dition.

For all λ ∈ Λ there exists x0 ∈ Φ−1(]0, r[) such that I ′λ(x0) = 0 and Iλ(x0) ≤ Iλ(x),
for all x ∈ Φ−1(]0, r[).

Here we state the existence of at least one weak solution.

Theorem 2.2. Suppose f and F are defined by (1.7) and

limsupt→0+

infx∈Ω F (x, t)

tp−
= +∞. (2.1)

For all λ ∈]0, λ∗[, where

λ∗ :=
1

a1k1(p+)
1

p− + a2

q− [kq]q(p+)
q+

p−

.

The problem (1.1) has at least a nontrivial weak solution.

Proof. Let r = 1 and apply Theorem 2.1 to get the result.
Assume X, ‖u‖,Φ and Ψ are in the previous section. Fix λ ∈]0, λ∗[, by (2.1) there
exists

0 < δλ < min

{
1, (

p−

[ 2
D ]pm(DN − (D2 )N )

)
1

p−

}
,

such that

sH infx∈ΩF (x, δ)

(H + 1)[ 2δ
D ]p(2N − 1)

>
1

λ
.

Suppose u ∈ X such that

u(x) =


0 x ∈ Ω\B(x0, D),
δλx x ∈ B(x0,

D
2 ),

δλ
D (D2 − (x− x0)2) x ∈ B(x0, D)\B(x0,

D
2 ),

Proposition 1.4 shows

Φ(u) =
∫

Ω
( 1
p(x) |∆u|

p(x) + |u|s
s|x|2s )dx

< 1
s [ 2δ
D ]pm(DN − (D2 )N ) + 1

sH [ 2δ
D ]sm(DN − (D2 )N )

≤ H+1
sH [ 2δ

D ]pm(DN − (D2 )N )
≤ 1.

So 0 < Φ(u) < 1, therefor Proposition 1.4 for each u ∈ Φ−1(∞, 1[ implies

‖u‖ ≤ [p+Φ(u)]
1

p− ≤ (p+)
1

p− . (2.2)

Hence

Ψ(u) =
∫

Ω
F (x, u(x))dx

≤ a1

∫
Ω
|u(x)|dx+ a2

q−

∫
Ω
|u(x)|q(x)dx

≤ a1k1‖u‖+ a2

q− [kq]
q‖u‖

q+

p−

≤ a1k1(p+)
1
p− + a2

q− [kq]
q(p+)

q+

p−
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for u ∈ Φ−1(−∞, 1[, so

sup
Φ(u)<1

Ψ(u) ≤ a1k1(p+)
1
p− +

a2

q−
[kq]

q(p+)
q+

p− =
1

λ∗
<

1

λ

therefor

sup
Φ(u)<1

Ψ(u) <
1

λ
<

Ψ(u)

Φ(u)
.

Thus I has a local minimum point u (see Theorem 2.1) and Theorem 2.2 is proved. �

The following example presents a function where satisfies the conditions of Theorem
2.2.

Example 2.3. Let f : Rn×R→ R by f(x, t) = e‖x‖tk−1, where 0 < k < p− < p <∞.
We have F (x, t) = e‖x‖tk. So

limsupt→0+
infx∈Ω F (x,t)

tp−
= limsupt→0+

infx∈Rn e
‖x‖tk

tp−

= limsupt→0+
1

tp−−k

= +∞.

2.2. Two weak solutions. By recalling another theorem, the existence of two weak
solutions of the problem (1.1) can be proved.

Theorem 2.4. [7] Suppose X is a real Banach space, Φ,Ψ : X → R are two
continuously Gâteaux differentiable functionals and Φ(0) = Ψ(0) = 0. Fix r > 0 and
suppose for

λ ∈]0,
r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)
[

the functional Iλ := Φ − λΨ is unbounded from below and satisfies (PS) condition.
Iλ has two distinct critical points for

λ ∈]0,
r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)
[.

The existence of two weak solutions is presented by applying Theorem 2.4 in case
r = 1.

Theorem 2.5. Let f satisfies (1.2), F be in (1.7), and there exist θ > p+ and r > 0
such that

0 < θF (x, t) ≤ tf(x, t). (2.3)

There exists two weak solutions of the problem (1.1) for λ ∈]0, λ∗[, where

λ∗ :=
1

a1C1(p+)
1

p− + a2

q− [Cq]q(p+)
q+

p−

. (2.4)
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Proof. Assume Φ and Ψ are defined by (1.5) and (1.8), respectively. Theorem is
proved by the following steps:
Step 1. I := Φ− λΨ satisfies (PS) condition.
Assume {un} is a sequence in X such that

d := sup
n→+∞

I(un) <∞, ‖I ′(un)‖X∗ → 0,

thus

d ≥ I(un)

≥
∫

Ω
1

p(x) |∆un|
p(x)dx+ 1

s

∫
Ω
|un|s
|x|2s dx− λ

∫
Ω
F (x, un)dx

≥
∫

Ω
1

p(x) |∆un|
p(x)dx+ 1

s

∫
Ω
|un|s
|x|2s dx−

λ
θ

∫
Ω
f(x, un)undx

≥
∫

Ω
1

p(x) |∆un|
p(x)dx+ 1

θ

∫
Ω
|un|s
|x|2s dx−

λ
θ

∫
Ω
f(x, un)undx

≥ ( 1
p+ − 1

θ )
∫

Ω
|∆un|p(x)dx+ 1

θ‖I
′(un)‖ ‖un‖,

so ‖un‖ is bounded. Therefore, if un ⇀ u so Ψ′(un)→ Ψ′(u), since I ′(un) = Φ′(un)−
λΨ′(un) = 0 then Φ′(un) → λΨ′(un), thus un → u (because Φ′ is homeomorphism).
So I satisfies the condition (PS).

Step 2. I is unbounded from below.
First we show, there exists M ∈ R+ such that for x ∈ Ω and |t| > M

F (x, ξ) ≥ K|ξ|θ. (2.5)

(2.3) implies

0 < θF (x, ξt) ≤ ξtf(x, ξt), for all ξ > 0.

Let m(x) := min
|ξ|=M

F (x, ξ) and gt(z) := F (x, zt) for all z > 0 thus

0 < θgt(z) = θF (x, zt) ≤ ztf(x, zt) = zg′t(z)

for all z > M
|t| , so∫ 1

M
|t|

g′t(z)

gt(z)
dz ≥

∫ 1

M
|t|

θ

z
dz,

then

Ln(
gt(1)

gt(
M
|t| )

) ≥ Ln(
|t|θ

Mθ
),

therefore

F (x, t) = gt(1) > F (x,
M

|t|
t)
|t|θ

Mθ
≥ m(x)

|t|θ

Mθ
≥ K|t|θ

so (2.5) is established.
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Fixed v ∈ X − {0}, for each t > 1 one has

I(tv) =
∫

Ω
1

p(x) |t∆v|
p(x)dx+ 1

s

∫
Ω
|tv|s
|x|2s dx− λ

∫
Ω
F (x, tv)dx

≤ tp+ ∫
Ω

1
p(x) |∆v|

p(x)dx+ ts

sH

∫
Ω
|∆v|s
|x|2s dx− λKt

θ
∫

Ω
|v|θdx− C1

≤ tp+

(
∫

Ω
1

p(x) |∆v|
p(x)dx+ 1

sH

∫
Ω
|∆v|s
|x|2s dx)− λKtθ

∫
Ω
|v|θdx− C1,

since p+ < θ if t→ +∞ then I → −∞.
Fix λ ∈]0, λ∗[ where λ∗ is defined as (2.4). By Proposition 1.4

‖u‖ ≤ [p+Φ(u)]
1

p− ≤ [p+]
1

p− = (p+)
1

p− , (2.6)

for each u ∈ Φ−1(]−∞, 1[) and by (1.4)∫
Ω

|u(x)|q(x)dx = ρq(u) ≤ [‖u‖Lq(x)(Ω)]
q ≤ [Cq‖u‖]q (2.7)

for u ∈ X. Also, the compact embedding X ↪→ L1(Ω), X ↪→ Lq(Ω) there exist
C1, Cq > 0 and by (1.2), (2.3), (2.6) and (2.7)

Ψ(u) =
∫

Ω
F (x, u)dx

≤ a1

∫
Ω
|u(x)|dx+ a2

q−

∫
Ω
|u(x)|q(x)dx

≤ a1C1‖u‖+ a2

q− [Cq‖u‖]q

≤ a1C1[p+]
1

p− + a2

q− [Cq]
q(p+)

q+

p−

= 1
λ∗

< 1
λ ,

therefore λ < 1
sup

u∈Φ−1(]−∞,1[)

Ψ(u) . Let I := Iλ, by Theorem 2.4, problem (1.1) has two

weak solutions. �

Example 2.6. Assume x ∈ R, 1 < p+ < θ < |t| < q(x) <∞, F (x, t) = q(x)[cosht−
1]. Consider{

∆2
p(x)u+ |u|s−2u

|x|2s = λq(x)sinht in Ω,

u = 0 on ∂Ω.

Notice that θF (x, t) < tf(x, t) or equivalently θcosht− tsinht− θ ≤ 0 for x ∈ R and
1 < θ < |t|. For this, we consider two different cases:
(i) If t > θ > 1 then

θcosht− tsinht− θ < θcosht− tsinht− θ < θe−t − θ < 0.

(ii) If t < −θ < −1 hence

θcosht− tsinht− θ < θcosht+ tsinht− θ < θet − θ < 0.

Therefore, the function f satisfies (2.3), so by Theorem 2.5 this problem has two weak
solutions.

Remark 2.7. In Example 2.6, q(x) can be replaced by all positive functions coshx, ex,
x2.
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2.3. Three weak solutions. Finally one can prove the existence of three weak so-
lutions of the problem (1.1) by recalling the following theorem.

Theorem 2.8. [7] Assume X is a reflexive real Banach space, Ψ : X → R is a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact,
Φ : X → R is a continuously Gâteaux differentiable, coercive, sequentially weakly
lower semi-continuous functional, whose Gâteaux derivative has a continuous inverse
and

inf
x∈Ω

Φ(x) = Φ(0) = Ψ(0) = 0.

Suppose there exist r > 0 and x ∈ X, with Φ(x) < r, such that

(i)
sup

Φ(x)<r

Ψ(x)

r < Ψ(x)
Φ(x) .

(ii) Φ− λΨ is coercive for λ ∈ Λ :=] Φ(x)
Ψ(x) ,

r
sup

Φ(x)<r

Ψ(x) [.

Φ− λΨ has at least three distinct critical points in X for λ ∈ Λ.

Theorem 2.9. Assume that f, F be in (1.7) and

F (x, t) ≥ 0, (2.8)

for (x, t) ∈ Ω× R+, also there exists C ∈ [0,∞) such that

F (x, t) ≤ C(1 + |t|q(x)), (2.9)

for (x, t) ∈ Ω×R, q(x) ∈ C(Ω) and 1 < q− < q(x) < q+ < p−. Moreover, there exist
δ, r > 0 with r < 1

p+ [ 2δ
D ]pm(DN − (D2 )N ) such that

ω <
(H + 1)[ 2δ

D ]p(2N − 1)

sH inf
x∈Ω

F (x, δ)
.

The problem (1.1) implies at least three weak solutions for λ ∈ Λ, where

• Λ :=]
(H+1)[ 2δ

D ]p(2N−1)

sH inf
x∈Ω

F (x,δ) , 1
ω [, ω is in (1.13) and D is in (1.12).

• m := π
N
2

N
2 Γ(N2 )

is the measure of unit of RN where Γ is the Gamma function.

Proof. Let X,Φ,Ψ and I be the same of as the last section. We investigate the
conditions (i) and (ii) of Theorem 2.8.
Let u ∈ X such that

u(x) =


0 x ∈ Ω\B(x0, D),
δλx x ∈ B(x0,

D
2 ),

δλ
D (D2 − (x− x0)2) x ∈ B(x0, D)\B(x0,

D
2 ),
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By Proposition 1.4 and hypothesis of theorem

r < 1
p+ [ 2δ

D ]pm(DN − (D2 )N )

≤
∫

Ω
( 1
p(x) |∆u|

p(x) + |u|s
s|x|2s )dx = Φ(u)

≤
∫

Ω
1
s |∆u|

p(x)dx+ 1
sH

∫
Ω
|∆u|sdx

≤ 1
s [ 2δ
D ]pm(DN − (D2 )N ) + 1

sH [ 2δ
D ]sm(DN − (D2 )N )

≤ H+1
sH [ 2δ

D ]pm(DN − (D2 )N ).

therefore

Ψ(u)

Φ(u)
≥

sH inf
x∈Ω

F (x, δ)

(H + 1)[ 2δ
D ]p(2N − 1)

, (2.10)

because

Ψ(u) ≥
∫
B(x0,D)

F (x, u(x))dx ≥ inf
x∈Ω

F (x, δ)m(
D

2
)N .

Proposition 1.4 for u ∈ Φ−1(−∞, r] shows

‖u‖ ≤ [p+Φ(u)]
1
p ≤ (p+)

1
p− [r]

1
p . (2.11)

Now (2.11), (1.2), the compact embedding X ↪→ L1(Ω) and X ↪→ Lq(x)(Ω) impliy

Ψ(u) =
∫

Ω
F (x, u(x))dx

≤ a1

∫
Ω
|u(x)|dx+ a2

q−

∫
Ω
|u(x)|q(x)dx

≤ a1C1‖u‖+ a2

q− [Cq]
q(p+)

q+

p− [[r]
1
p ]

≤ a1C1(p+)
1
p− [r]

1
p + a2

q− [Cq]
q(p+)

q+

p− [[r]
1
p ]

for u ∈ Φ−1(−∞, r], therefore

1

r
sup

u∈Φ−1(−∞,r]
Ψ(u) ≤ 1

r

{
a1C1(p+)

1
p− [r]

1
p +

a2

q−
[Cq]

q(p+)
q+

p− [[r]
1
p ]

}
<

Ψ(u)

Φ(u)

this implies part (i) of Theorem 2.8 is satisfied.

Notice that I := Φ− λΨ is coercive for each λ > 0. Let u ∈ X with ‖u‖ ≥
{

1, 1
Cq

}
,

by (1.4) and (2.9), we have

Ψ(u) =

∫
Ω

F (x, t)dx ≤
∫

Ω

(C(1 + |t|q(x)))dx ≤ C(|Ω|+ [Cq‖u‖]q
+

),

therefor

I(u) = Φ(u)− λΨ(u) ≥ 1

p+
‖u‖p

−
− λC(|Ω|+ Cq

+

q ‖u‖q
+

),
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hence, q+ < p− implies I is coercive and (1.1)implies at least three weak solutions. �

Example 2.10. Let f : Rn × R → R by f(x, t) = e−‖x‖tk−1, where 1 < k < q− <
q(x) <∞. Thus F (x, t) = e−‖x‖tk. So, by C > 1, we have

F (x, t) = e−‖x‖tk < Ctk < C(1 + |t|q(x))

and the conditions of Theorem 2.8 are satisfied.
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