Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 9, No. 3, 2021, pp. 818-829 DOI:10.22034/cmde.2020.34709.1584

Multiple solutions for a fourth-order elliptic equation involving singularity

Reza Mahdavi Khanghahi

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran. Postal code: 34149-16818 E-mail: R.mahdavi@edu.ikiu.ac.ir

Abdolrahman Razani

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran. Postal code: 34149-16818 E-mail: razani@sci.ikiu.ac.ir

Abstract Here, we consider a fourth-order elliptic problem involving singularity and p(x)biharmonic operator. Using Hardy's inequality, S_+ -condition, and Palais-Smale condition, the existence of weak solutions in a bounded domain in \mathbb{R}^N is proved. Finally, we percent some examples.

Keywords. Higher-order elliptic equations, Singular nonlinear boundary value problems, Critical point theory, Variational methods.

2010 Mathematics Subject Classification. 35J35, 34B16, 58E05.

1. INTRODUCTION

The area of partial differential equations (PDE's) has been growing steadily since middle of the 19th century. PDE's can be used to describe a wide variety of phenomena such as sound, heat, diffusion, electrostatics, electrodynamics, fluid dynamics, elasticity, or quantum mechanics (for example see [23-30]).

The boundary value problems with p(x)-biharmonic operator have been studied by many researchers [1-3, 14-20, 31, 33, 36].

In this paper we consider the following problem

$$\begin{cases} \Delta_{p(x)}^{2}u + \frac{|u|^{s-2}u}{|x|^{2s}} = \lambda f(x, u) & \text{in } \Omega, \\ u = \Delta u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where

- $\Omega \subset \mathbb{R}^N (N \ge 5)$ is a bounded domain with smooth boundary. $\Delta_{p(x)}^2 u = \Delta(|\Delta u|^{p(x)-2}\Delta u)$, denotes p(x)-biharmonic operator. $p(x) \in C(\overline{\Omega}), 1 < s < p(x) < \infty$ and

Received: 23 July 2019; Accepted: 10 May 2020.

•
$$q(x) \in C(\overline{\Omega})$$
 with $1 < q(x) < p^*(x)$ where

$$P^*(x) := \begin{cases} \frac{Np(x)}{N-p(x)} & p(x) < N, \\ \infty & p(x) \ge N. \end{cases}$$

- λ is strictly positive real parameter and
- The Carathéodory function $f: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies

$$|f(x,t)| \le a_1 + a_2 |t|^{q(x)-2}$$
, for all $(x,t) \in \Omega \times \mathbb{R}$, (1.2)

where a_1, a_2 are two positive constants.

Wang [34], considered the existence of solutions for the following biharmonic problem

$$\begin{cases} \Delta^2 u = \lambda \frac{|u|^{2^{**}-2}}{|x|^s} + \beta a(x)|u|^{r-2}u = f(x,u) & x \in \mathbb{R}^N, \\ u \in D_0^{2,2}(\mathbb{R}^N) & N \ge 5, \end{cases}$$

where $D_0^{2,2}(\mathbb{R}^N)$ is the closure of $C^{\infty}(\mathbb{R}^N)$, $2^{**}(s) = \frac{2(N-s)}{N-4}$, $0 \le s < 4$ and $1 < r < 2^{**}$.

In 2013, Xie [35] studied the following problem

$$\begin{cases} \Delta_p^2 u - \lambda \frac{|u|^{p-2}u}{|x|^{2p}} = f(x, u) & \text{in } \Omega, \\ u = \frac{\partial u}{\partial x} = 0 & \text{on } \partial\Omega, \end{cases}$$

where $1 and <math>0 \le \lambda < [\frac{N(p-1)(N-2p)}{p^2}]^p$.

In this work, we investigate the problem (1.1) and prove the existence of weak solutions, by applying Hardy's inequality, S_+ -condition and Palais-Smale condition (or (PS) condition). Due to do this, we recall the following definitions.

Definition 1.1. [21] Let $1 < s < \frac{N}{2}$, for all $u \in X$

$$\int_{\Omega} \frac{|u(x)|^s}{|x|^{2s}} dx \le \frac{1}{H} \int_{\Omega} |\Delta u(x)|^s dx,$$
(1.3)

is called the classical Hardy's inequality, where $H := \left(\frac{N(s-1)(N-2s)}{s^2}\right)^s$.

Definition 1.2. [32] Let X be a reflexive real Banach space. If the assumptions $\limsup_{n \to +\infty} \langle T(u_n) - T(u_0) | u_n - u_0 \rangle \leq 0$ and $u_n \to u_0$ in X imply $u_n \to u_0$ in X, then the operator $T: X \to X^*$ is said to satisfy the (S_+) condition.

Definition 1.3. [4] Let X be a Banach space and $\Phi: X \to \mathbb{R}$ a C^1 -functional. Φ is said to satisfy the Palais-Smale condition (denoted by (PS)), if any sequence u_n in X such that $\Phi(u_n)$ is bounded and $\Phi'(u_n) \to 0$ admits a convergent subsequence.

As before

$$L^{p(x)}(\Omega) = \left\{ u : \Omega \to \mathbb{R}; u \text{ is measurable and } \int_{\Omega} |u(x)|^{p(x)} dx < \infty \right\},$$

and it is endowed with

$$\|\varphi\|_{L^{p(x)}} := \inf \left\{ \lambda > 0; \int_{\Omega} \left| \frac{\varphi(x)}{\lambda} \right|^{p(x)} dx \leq 1 \right\}.$$

Also

$$W^{1,p(x)}(\Omega) := \left\{ \varphi \in L^{p(x)}; |\nabla \varphi| \in L^{p(x)} \right\},\$$

and its norm is defined by

$$\|\varphi\|_{W^{1,p(x)}} := \|\varphi\|_{L^{p(x)}} + \||\nabla\varphi\|\|_{L^{p(x)}}.$$

Finally

$$W_0^{1,p(x)}(\Omega) := \left\{ \varphi \in W^{1,p(x)}; \, \varphi|_{\partial\Omega} = 0 \right\}.$$

Set $p^- := \inf_{x \in \Omega} p(x)$ and $p^+ := \sup_{x \in \Omega} p(x)$. Let $X := W_0^{1,p(x)}(\Omega) \bigcap W^{2,p(x)}$ endowed with the norm

$$|u|| = |||\Delta u|||_{L^{p(x)}},$$

by the compact embedding $X \hookrightarrow L^{q(x)}(\Omega)$, there exists a $C_q > 0$ such that

$$\|u\|_{L^{q(x)}} \le C_q \|u\|, \tag{1.4}$$

where $1 < q(x) < p^*(x)$ for all $x \in \Omega$ (see [11, Proposition 2.5]). Suppose $\Phi: X \to \mathbb{R}$ is a functional defined by

$$\Phi(u) = \int_{\Omega} \left(\frac{1}{p(x)} |\Delta u|^{p(x)} + \frac{|u|^s}{s|x|^{2s}}\right) dx,$$
(1.5)

where $1 < s < p^{-} \le p(x) \le p^{+} < \infty$. By [22] and [11, Theorem 3.1],

• Φ is a continuously Gâteaux differentiable functional and for $u, v \in X$

$$\Phi'(u)(v) = \int_{\Omega} (|\Delta u|^{p(x)-2} |\Delta u| |\Delta v| + \frac{|u|^{s-2} uv}{|x|^{2s}}) dx.$$
(1.6)

• $\Phi': X \to X^*$ is strictly monotone, homeomorphism and satisfies the (S_+) condition.

Proposition 1.4. [10, Theorem 1.3] Assume $\varphi \in W_0^{1,p(x)}$ and $\rho_p(\varphi) := \int_{\Omega} |\varphi(x)|^{p(x)} dx$. Then

- $\begin{array}{ll} (i) & \|\varphi\| < 1(=1,>1) \; iff \; \rho_p(|\Delta\varphi|) < 1(=1:>1). \\ (ii) & \|\varphi\| > 1, \; then \; \frac{1}{p^+} \|\varphi\|^{p^-} \le \Phi(\varphi) \le \frac{1}{p^-} \|\varphi\|^{p^+} + \int_{\Omega} \frac{|\varphi|^s}{s|x|^{2s}} dx. \\ (iii) & \|\varphi\| < 1, \; then \; \frac{1}{p^+} \|\varphi\|^{p^+} \le \Phi(\varphi) \le \frac{1}{p^-} \|\varphi\|^{p^-} + \int_{\Omega} \frac{|\varphi|^s}{s|x|^{2s}} dx. \end{array}$

Assume $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function and for all $(x, \xi) \in X$, define

$$F(x,\xi) := \int_{\Omega}^{\xi} f(x,t)dt.$$
(1.7)

• For $u \in X$, define $\Psi : X \to \mathbb{R}$ by

$$\Psi(u) := \int_{\Omega} F(x, u(x)) dx.$$
(1.8)

• Ψ is continuously Gâteaux differentiable functional, has compact derivative and

$$\Psi'(u)(v) := \int_{\Omega} f(x, u(x))v(x)dx, \qquad (1.9)$$

for u, v in X (see [22]).

• Define $I := \Phi - \lambda \Psi$. Notice that I'(u) = 0 implies for $u, v \in X$,

$$\int_{\Omega} (|\Delta u|^{p(x)-2} |\Delta u| |\Delta v| + \frac{|u|^{s-2} uv}{|x|^{2s}}) dx = \lambda \int_{\Omega} f(x, u(x)) v(x) dx.$$
(1.10)

So the weak solutions of the problem (1.1) are the critical points of I. For $x \in \Omega$, set

$$\delta(x) := \sup \left\{ \delta > 0 : B(x, \delta) \subseteq \Omega \right\},$$

$$D := \sup_{x \in \Omega} \delta(x). \tag{1.12}$$

Clearly, there exists $x_0 \in \Omega$ such that $B(x_0, D) \subseteq \Omega$.

Also, for a > 0 and $q(x) \in C(\overline{\Omega})$ with

$$1 < q^{-} := \inf_{x \in \Omega} q(x) < q(x) < q^{+} := \sup_{x \in \Omega} q(x) < 0,$$

we have:

$$[a]^{q(x)} := max \left\{ a^{q^{-}}, a^{q^{+}} \right\},$$
$$[a]_{q(x)} := min \left\{ a^{q^{-}}, a^{q^{+}} \right\},$$

where $x \in \Omega$. Let r > 0, set

$$\overline{\omega} := \frac{1}{r} \left\{ a_1 C_1(p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [C_q]^q (p^+)^{\frac{q^+}{p^-}} [[r]^{\frac{1}{p}}]^q \right\}$$
(1.13)

where a_1, a_2 are positive numbers and C_1, C_q are ordinary embedding constants $X \hookrightarrow L^1(\Omega)$ and $X \hookrightarrow L^{q(x)}(\Omega)$.

2. EXISTENCE OF WEAK SOLUTIONS

Here the existence of multiple weak solutions of the problem (1.1) in different cases are proved and some examples are presented.

2.1. A weak solutions. In order to study the existence of weak solution of the problem (1.1), we recall the following theorem.

Theorem 2.1. [7] Assume X is a real Banach space, $\Phi, \Psi : X \to \mathbb{R}$ are two continuously Gâteaux differentiable functional such that

$$\inf_{x \in \Omega} \Phi(x) = \Phi(0) = \Psi(0) = 0$$

Suppose there exist r > 0 and $\overline{x} \in X$ with $0 < \Phi(\overline{x}) < r$ such that

• (i) $\frac{\sup_{\Phi(x) < r} \Psi(x)}{r} < \frac{\Psi(\overline{x})}{\Phi(\overline{x})}$.

(1.11)

• (ii) for all
$$\lambda \in \Lambda :=]\frac{\Phi(\overline{x})}{\Psi(\overline{x})}, \frac{r}{\sup_{\Phi(x) < r} \Psi(x)} [, I_{\lambda} := \Phi - \lambda \Psi \text{ satisfies } (PS)^{[r]} \text{ condition.}$$

For all $\lambda \in \Lambda$ there exists $x_0 \in \Phi^{-1}(]0, r[)$ such that $I'_{\lambda}(x_0) = 0$ and $I_{\lambda}(x_0) \leq I_{\lambda}(x)$, for all $x \in \Phi^{-1}(]0, r[)$.

Here we state the existence of at least one weak solution.

Theorem 2.2. Suppose f and F are defined by (1.7) and

$$limsup_{t\to 0^+} \frac{\inf_{x\in\Omega} F(x,t)}{t^{p^-}} = +\infty.$$

$$(2.1)$$

For all $\lambda \in]0, \lambda^*[$, where

$$\lambda^* := \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}.$$

The problem (1.1) has at least a nontrivial weak solution.

Proof. Let r = 1 and apply Theorem 2.1 to get the result. Assume $X, ||u||, \Phi$ and Ψ are in the previous section. Fix $\lambda \in]0, \lambda^*[$, by (2.1) there exists

$$0 < \delta_{\lambda} < \min\left\{1, \left(\frac{p^{-}}{[\frac{2}{D}]^{p}m(D^{N} - (\frac{D}{2})^{N})}\right)^{\frac{1}{p^{-}}}\right\},\$$

such that

$$\frac{sH \inf_{x \in \Omega} F(x, \delta)}{(H+1)[\frac{2\delta}{D}]^p (2^N - 1)} > \frac{1}{\lambda}$$

Suppose $\overline{u} \in X$ such that

$$\overline{u}(x) = \begin{cases} 0 & x \in \Omega \backslash B(x_0, D), \\ \delta_{\lambda}x & x \in B(x_0, \frac{D}{2}), \\ \frac{\delta_{\lambda}}{D}(D^2 - (x - x_0)^2) & x \in B(x_0, D) \backslash B(x_0, \frac{D}{2}), \end{cases}$$

Proposition 1.4 shows

$$\begin{split} \Phi(\overline{u}) &= \int_{\Omega} \left(\frac{1}{p(x)} |\Delta \overline{u}|^{p(x)} + \frac{|\overline{u}|^s}{s|x|^{2s}}\right) dx \\ &< \frac{1}{s} \left[\frac{2\delta}{D}\right]^p m(D^N - \left(\frac{D}{2}\right)^N) + \frac{1}{sH} \left[\frac{2\delta}{D}\right]^s m(D^N - \left(\frac{D}{2}\right)^N) \\ &\leq \frac{H + 1}{sH} \left[\frac{2\delta}{D}\right]^p m(D^N - \left(\frac{D}{2}\right)^N) \\ &\leq 1. \end{split}$$

So $0 < \Phi(\overline{u}) < 1$, therefor Proposition 1.4 for each $u \in \Phi^{-1}(\infty, 1[$ implies

$$||u|| \le [p^+ \Phi(u)]^{\frac{1}{p^-}} \le (p^+)^{\frac{1}{p^-}}.$$
(2.2)

Hence

$$\begin{split} \Psi(u) &= \int_{\Omega} F(x, u(x)) dx \\ &\leq a_1 \int_{\Omega} |u(x)| dx + \frac{a_2}{q^-} \int_{\Omega} |u(x)|^{q(x)} dx \\ &\leq a_1 k_1 \|u\| + \frac{a_2}{q^-} [k_q]^q \|u\|_{p^-}^{\frac{q^+}{p^-}} \\ &\leq a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}} \end{split}$$

for $u \in \Phi^{-1}(-\infty, 1[$, so

$$\sup_{\Phi(u)<1} \Psi(u) \le a_1 k_1 (p^+)^{\frac{1}{p_-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p_-}} = \frac{1}{\lambda^*} < \frac{1}{\lambda}$$

therefor

$$\sup_{\Phi(u)<1}\Psi(u)<\frac{1}{\lambda}<\frac{\Psi(\overline{u})}{\Phi(\overline{u})}.$$

Thus I has a local minimum point \overline{u} (see Theorem 2.1) and Theorem 2.2 is proved. \Box

The following example presents a function where satisfies the conditions of Theorem 2.2.

Example 2.3. Let $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ by $f(x, t) = e^{\|x\|} t^{k-1}$, where $0 < k < p^- < p < \infty$. We have $F(x, t) = e^{\|x\|} t^k$. So

$$\begin{split} limsup_{t\to 0^+} \frac{\inf_{x\in\Omega} F(x,t)}{t^{p^-}} &= limsup_{t\to 0^+} \frac{\inf_{x\in\mathbb{R}^n} e^{\|x\|} t^k}{t^{p^-}} \\ &= limsup_{t\to 0^+} \frac{1}{t^{p^--k}} \\ &= +\infty. \end{split}$$

2.2. Two weak solutions. By recalling another theorem, the existence of two weak solutions of the problem (1.1) can be proved.

Theorem 2.4. [7] Suppose X is a real Banach space, $\Phi, \Psi : X \to \mathbb{R}$ are two continuously Gâteaux differentiable functionals and $\Phi(0) = \Psi(0) = 0$. Fix r > 0 and suppose for

$$\lambda \in]0, \frac{r}{\sup_{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)}[$$

the functional $I_{\lambda} := \Phi - \lambda \Psi$ is unbounded from below and satisfies (PS) condition. I_{λ} has two distinct critical points for

$$\lambda \in]0, \frac{r}{\sup_{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)} [.$$

The existence of two weak solutions is presented by applying Theorem 2.4 in case r = 1.

Theorem 2.5. Let f satisfies (1.2), F be in (1.7), and there exist $\theta > p^+$ and r > 0 such that

$$0 < \theta F(x,t) \le t f(x,t). \tag{2.3}$$

There exists two weak solutions of the problem (1.1) for $\lambda \in]0, \lambda^*[$, where

$$\lambda^* := \frac{1}{a_1 C_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [C_q]^q (p^+)^{\frac{q^+}{p^-}}}.$$
(2.4)

Proof. Assume Φ and Ψ are defined by (1.5) and (1.8), respectively. Theorem is proved by the following steps:

Step 1. $I := \Phi - \lambda \Psi$ satisfies (PS) condition. Assume $\{u_n\}$ is a sequence in X such that

$$d:=\sup_{n\to+\infty}I(u_n)<\infty, \ \|I'(u_n)\|_{X^*}\to 0,$$

thus

$$\begin{aligned} d &\geq I(u_n) \\ &\geq \int_{\Omega} \frac{1}{p(x)} |\Delta u_n|^{p(x)} dx + \frac{1}{s} \int_{\Omega} \frac{|u_n|^s}{|x|^{2s}} dx - \lambda \int_{\Omega} F(x, u_n) dx \\ &\geq \int_{\Omega} \frac{1}{p(x)} |\Delta u_n|^{p(x)} dx + \frac{1}{s} \int_{\Omega} \frac{|u_n|^s}{|x|^{2s}} dx - \frac{\lambda}{\theta} \int_{\Omega} f(x, u_n) u_n dx \\ &\geq \int_{\Omega} \frac{1}{p(x)} |\Delta u_n|^{p(x)} dx + \frac{1}{\theta} \int_{\Omega} \frac{|u_n|^s}{|x|^{2s}} dx - \frac{\lambda}{\theta} \int_{\Omega} f(x, u_n) u_n dx \\ &\geq (\frac{1}{p^+} - \frac{1}{\theta}) \int_{\Omega} |\Delta u_n|^{p(x)} dx + \frac{1}{\theta} \|I'(u_n)\| \|u_n\|, \end{aligned}$$

so $||u_n||$ is bounded. Therefore, if $u_n \to u$ so $\Psi'(u_n) \to \Psi'(u)$, since $I'(u_n) = \Phi'(u_n) - \lambda \Psi'(u_n) = 0$ then $\Phi'(u_n) \to \lambda \Psi'(u_n)$, thus $u_n \to u$ (because Φ' is homeomorphism). So I satisfies the condition (PS).

Step 2. I is unbounded from below. First we show, there exists $M \in \mathbb{R}^+$ such that for $x \in \Omega$ and |t| > M

$$F(x,\xi) \ge K|\xi|^{\theta}.$$
(2.5)

(2.3) implies

$$0 < \theta F(x, \xi t) \le \xi t f(x, \xi t)$$
, for all $\xi > 0$.

Let $m(x) := \min_{|\xi|=M} F(x,\xi)$ and $g_t(z) := F(x,zt)$ for all z > 0 thus

$$0 < \theta g_t(z) = \theta F(x, zt) \le ztf(x, zt) = zg'_t(z)$$

for all $z > \frac{M}{|t|}$, so

$$\int_{\frac{M}{|t|}}^{1} \frac{g_t'(z)}{g_t(z)} dz \ge \int_{\frac{M}{|t|}}^{1} \frac{\theta}{z} dz,$$

then

$$Ln(\frac{g_t(1)}{g_t(\frac{M}{|t|})}) \ge Ln(\frac{|t|^{\theta}}{M^{\theta}}),$$

therefore

$$F(x,t) = g_t(1) > F(x, \frac{M}{|t|}t) \frac{|t|^{\theta}}{M^{\theta}} \ge m(x) \frac{|t|^{\theta}}{M^{\theta}} \ge K|t|^{\theta}$$

so (2.5) is established.

Fixed $v \in X - \{0\}$, for each t > 1 one has

$$\begin{split} I(tv) &= \int_{\Omega} \frac{1}{p(x)} |t\Delta v|^{p(x)} dx + \frac{1}{s} \int_{\Omega} \frac{|tv|^s}{|x|^{2s}} dx - \lambda \int_{\Omega} F(x, tv) dx \\ &\leq t^{p^+} \int_{\Omega} \frac{1}{p(x)} |\Delta v|^{p(x)} dx + \frac{t^s}{sH} \int_{\Omega} \frac{|\Delta v|^s}{|x|^{2s}} dx - \lambda K t^{\theta} \int_{\Omega} |v|^{\theta} dx - C_1 \\ &\leq t^{p^+} (\int_{\Omega} \frac{1}{p(x)} |\Delta v|^{p(x)} dx + \frac{1}{sH} \int_{\Omega} \frac{|\Delta v|^s}{|x|^{2s}} dx) - \lambda K t^{\theta} \int_{\Omega} |v|^{\theta} dx - C_1, \end{split}$$

since $p^+ < \theta$ if $t \to +\infty$ then $I \to -\infty$.

Fix $\lambda \in]0, \lambda^*[$ where λ^* is defined as (2.4). By Proposition 1.4

$$\|u\| \le [p^+ \Phi(u)]^{\frac{1}{p^-}} \le [p^+]^{\frac{1}{p^-}} = (p^+)^{\frac{1}{p^-}},$$
(2.6)

for each $u \in \Phi^{-1}(] - \infty, 1[)$ and by (1.4)

$$\int_{\Omega} |u(x)|^{q(x)} dx = \rho_q(u) \le [\|u\|_{L^{q(x)}(\Omega)}]^q \le [C_q \|u\|]^q$$
(2.7)

for $u \in X$. Also, the compact embedding $X \hookrightarrow L^1(\Omega)$, $X \hookrightarrow L^q(\Omega)$ there exist $C_1, C_q > 0$ and by (1.2), (2.3), (2.6) and (2.7)

$$\begin{split} \Psi(u) &= \int_{\Omega} F(x, u) dx \\ &\leq a_1 \int_{\Omega} |u(x)| dx + \frac{a_2}{q^-} \int_{\Omega} |u(x)|^{q(x)} dx \\ &\leq a_1 C_1 \|u\| + \frac{a_2}{q^-} [C_q\|u\|]^q \\ &\leq a_1 C_1 [p^+]^{\frac{1}{p^-}} + \frac{a_2}{q^-} [C_q]^q (p^+)^{\frac{q^+}{p^-}} \\ &= \frac{1}{\lambda^*} \\ &< \frac{1}{\lambda}, \end{split}$$

therefore $\lambda < \frac{1}{\sup_{u \in \Phi^{-1}(]-\infty,1[)} \Psi(u)}$. Let $I := I_{\lambda}$, by Theorem 2.4, problem (1.1) has two weak solutions.

Example 2.6. Assume $x \in \mathbb{R}$, $1 < p^+ < \theta < |t| < q(x) < \infty$, F(x,t) = q(x)[cosht - 1]. Consider

$$\left\{ \begin{array}{ll} \Delta_{p(x)}^2 u + \frac{|u|^{s-2}u}{|x|^{2s}} = \lambda q(x) sinht & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{array} \right.$$

Notice that $\theta F(x,t) < tf(x,t)$ or equivalently $\theta cosht - tsinht - \theta \leq 0$ for $x \in \mathbb{R}$ and $1 < \theta < |t|$. For this, we consider two different cases: (i) If $t > \theta > 1$ then

$$\theta cosht - tsinht - \theta < \theta cosht - tsinht - \theta < \theta e^{-t} - \theta < 0.$$

(*ii*) If $t < -\theta < -1$ hence

 $\theta cosht - tsinht - \theta < \theta cosht + tsinht - \theta < \theta e^t - \theta < 0.$

Therefore, the function f satisfies (2.3), so by Theorem 2.5 this problem has two weak solutions.

Remark 2.7. In Example 2.6, q(x) can be replaced by all positive functions $\cosh x, e^x, x^2$.

2.3. Three weak solutions. Finally one can prove the existence of three weak solutions of the problem (1.1) by recalling the following theorem.

Theorem 2.8. [7] Assume X is a reflexive real Banach space, $\Psi : X \to \mathbb{R}$ is a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact, $\Phi : X \to \mathbb{R}$ is a continuously Gâteaux differentiable, coercive, sequentially weakly lower semi-continuous functional, whose Gâteaux derivative has a continuous inverse and

$$\inf_{x \in \Omega} \Phi(x) = \Phi(0) = \Psi(0) = 0.$$

Suppose there exist r > 0 and $\overline{x} \in X$, with $\Phi(\overline{x}) < r$, such that

(i)
$$\frac{\sup_{\Phi(x) < r} \Psi(x)}{r} < \frac{\Psi(\overline{x})}{\Phi(\overline{x})}.$$

(ii) $\Phi - \lambda \Psi$ is coercive for $\lambda \in \Lambda :=]\frac{\Phi(\overline{x})}{\Psi(\overline{x})}, \frac{r}{\sup_{\Phi(x) < r} \Psi(x)}[.$

 $\Phi - \lambda \Psi$ has at least three distinct critical points in X for $\lambda \in \Lambda$.

Theorem 2.9. Assume that f, F be in (1.7) and

$$F(x,t) \ge 0,\tag{2.8}$$

for $(x,t) \in \Omega \times \mathbb{R}^+$, also there exists $C \in [0,\infty)$ such that

$$F(x,t) \le C(1+|t|^{q(x)}),\tag{2.9}$$

for $(x,t) \in \Omega \times \mathbb{R}$, $q(x) \in C(\overline{\Omega})$ and $1 < q^- < q(x) < q^+ < p^-$. Moreover, there exist $\delta, r > 0$ with $r < \frac{1}{p^+} [\frac{2\delta}{D}]_p m(D^N - (\frac{D}{2})^N)$ such that

$$\overline{\omega} < \frac{(H+1)[\frac{2\delta}{D}]^p (2^N - 1)}{sH \inf_{x \in \Omega} F(x, \delta)}.$$

The problem (1.1) implies at least three weak solutions for $\lambda \in \Lambda$, where

Λ :=] (H+1)[2δ/D]^p(2^N-1)/(3H inf F(x,δ)), 1/ω[, ω is in (1.13) and D is in (1.12).
m := π^{N/2}/(N/2) is the measure of unit of ℝ^N where Γ is the Gamma function.

Proof. Let X, Φ, Ψ and I be the same of as the last section. We investigate the conditions (i) and (ii) of Theorem 2.8.

Let $\overline{u} \in X$ such that

$$\overline{u}(x) = \begin{cases} 0 & x \in \Omega \setminus B(x_0, D), \\ \delta_{\lambda}x & x \in B(x_0, \frac{D}{2}), \\ \frac{\delta_{\lambda}}{D} (D^2 - (x - x_0)^2) & x \in B(x_0, D) \setminus B(x_0, \frac{D}{2}), \end{cases}$$

By Proposition 1.4 and hypothesis of theorem

$$\begin{aligned} r &< \frac{1}{p^+} [\frac{2\delta}{D}]_p m (D^N - (\frac{D}{2})^N) \\ &\leq \int_{\Omega} (\frac{1}{p(x)} |\Delta \overline{u}|^{p(x)} + \frac{|\overline{u}|^s}{s|x|^{2s}}) dx = \Phi(\overline{u}) \\ &\leq \int_{\Omega} \frac{1}{s} |\Delta \overline{u}|^{p(x)} dx + \frac{1}{sH} \int_{\Omega} |\Delta \overline{u}|^s dx \\ &\leq \frac{1}{s} [\frac{2\delta}{D}]^p m (D^N - (\frac{D}{2})^N) + \frac{1}{sH} [\frac{2\delta}{D}]^s m (D^N - (\frac{D}{2})^N) \\ &\leq \frac{H+1}{sH} [\frac{2\delta}{D}]^p m (D^N - (\frac{D}{2})^N). \end{aligned}$$

therefore

$$\frac{\Psi(\overline{u})}{\Phi(\overline{u})} \ge \frac{sH \inf_{x \in \Omega} F(x, \delta)}{(H+1)[\frac{2\delta}{D}]^p (2^N - 1)},\tag{2.10}$$

because

$$\Psi(\overline{u}) \ge \int_{B(x_0,D)} F(x,\overline{u}(x)) dx \ge \inf_{x \in \Omega} F(x,\delta) m(\frac{D}{2})^N.$$

Proposition 1.4 for $u \in \Phi^{-1}(-\infty, r]$ shows

$$||u|| \le [p^+ \Phi(u)]^{\frac{1}{p}} \le (p^+)^{\frac{1}{p-1}} [r]^{\frac{1}{p}}.$$
(2.11)

Now (2.11), (1.2), the compact embedding $X \hookrightarrow L^1(\Omega)$ and $X \hookrightarrow L^{q(x)}(\Omega)$ imply

$$\Psi(u) = \int_{\Omega} F(x, u(x)) dx$$

$$\leq a_1 \int_{\Omega} |u(x)| dx + \frac{a_2}{q^-} \int_{\Omega} |u(x)|^{q(x)} dx$$

$$\leq a_1 C_1 ||u|| + \frac{a_2}{q^-} [C_q]^q (p^+)^{\frac{q^+}{p^-}} [[r]^{\frac{1}{p}}]$$

$$\leq a_1 C_1 (p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [C_q]^q (p^+)^{\frac{q^+}{p^-}} [[r]^{\frac{1}{p}}]$$

for $u \in \Phi^{-1}(-\infty, r]$, therefore

$$\frac{1}{r} \sup_{u \in \Phi^{-1}(-\infty,r]} \Psi(u) \le \frac{1}{r} \left\{ a_1 C_1(p^+)^{\frac{1}{p-1}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [C_q]^q (p^+)^{\frac{q^+}{p-1}} [[r]^{\frac{1}{p}}] \right\} < \frac{\Psi(\overline{u})}{\Phi(\overline{u})}$$

this implies part (i) of Theorem 2.8 is satisfied.

Notice that $I := \Phi - \lambda \Psi$ is coercive for each $\lambda > 0$. Let $u \in X$ with $||u|| \ge \left\{1, \frac{1}{C_q}\right\}$, by (1.4) and (2.9), we have

$$\Psi(u) = \int_{\Omega} F(x,t) dx \le \int_{\Omega} (C(1+|t|^{q(x)})) dx \le C(|\Omega| + [C_q||u||]^{q^+}),$$

therefor

$$I(u) = \Phi(u) - \lambda \Psi(u) \ge \frac{1}{p^+} ||u||^{p^-} - \lambda C(|\Omega| + C_q^{q^+} ||u||^{q^+}),$$

hence, $q^+ < p^-$ implies I is coercive and (1.1) implies at least three weak solutions.

Example 2.10. Let $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ by $f(x,t) = e^{-\|x\|}t^{k-1}$, where $1 < k < q^- < q(x) < \infty$. Thus $F(x,t) = e^{-\|x\|}t^k$. So, by C > 1, we have

$$F(x,t) = e^{-\|x\|} t^k < Ct^k < C(1+|t|^{q(x)})$$

and the conditions of Theorem 2.8 are satisfied.

References

- F. Abdolrazaghi and A. Razani, On the weak solutions of an overdetermined system of nonlinear fractional partial integro-differential equations, Miskolc Math. Notes, 20(1) (2019), 3–16, DOI: 10.18514/MMN.2019.2755.
- [2] R. Ayazoghlu, G. Alisay, and I. Ekincioglu, Existence of one weak solution for p(x)-biharmonic equations involving a concave-convex nonlinearity, Matematicki Vesnik, 69 (2017), 296–307.
- F. Behboudi and A. Razani, Two weak solutions for a singular (p,q)-Laplacian problem, Filomat, 33(11) (2019), 3399-3407, https://doi.org/10.2298/FIL1911399B.
- [4] G. Bonanno, Relation between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205–220.
- [5] G. Bonanno and A. Chinni, Discontinuous elliptic problems involving the p(x)-Laplacian, Math. Nacher., 284 (2011), 639–652.
- [6] G. Bonanno and A. Chinni, Existence and multiplicity of weak solution for elliptic dirichlet problems with variable exponent, J. Math. Anal. Appl., 418 (2014), 812–827.
- [7] G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Apple. Anal., 89 (2010), 1–10.
- [8] C. C. Chen and C. S. Lin, Local bihavior of singular positive solutions of semilinear elliptic equations with sobolev exponent, Duke Math. J., 78 (1995), 315–334.
- [9] P. Drábek, Strongly nonlinear degenerated and singular elliptic problems, Pitman Research Notes in Mathematics Series, 343 (1996), 112–146.
- [10] X. L. Fan and D. Zhao, On the space $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446.
- [11] X. L. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2011), 1843–1852.
- [12] N. Ghoussoub and C. Yuan, Multiple solutions for Quashi-linear PDEs involving the critical Sobolev and Hardy exponents, Amer. Math. Soc., 352 (2000), 5703–5743.
- [13] M. Khodabakhshi, A. M. Aminpour, G. A. Afrouzi, and A. Hadjian, Existence of two weak solutions for some singular elliptic problems, Rev. R. Acad. Cienc. Ex. Fis. Nat. Ser. A. Mat. 110 (2016), 385–393.
- [14] L. Kong, Multiple solutions fourth order elliptic problems with p(x)-biharmonic operators, Opuscula Math., 36 (2016), 253–264.
- [15] L. Li and C. Tang, Existence and multiplicity of solutions for a class of p(x)-biharmonic equations, Acta Math. Sci. Ser. A Chin Ed, 33 (2013), 155-170.
- [16] R. Mahdavi Khanghahi and A. Razani, Existence of at least three weak solutions for a singular fourth-order elliptic problems, J. Math. Anal., 8 (2017), 45–51.
- [17] R. Mahdavi Khanghahi, and A. Razani, Solutions for a singular elliptic problem involving the p(x)-Laplacian, Filomat, 32(14) (2018), 4841-4850.
- [18] M. Makvand Chaharlang and A. Razani, Infinitely many solutions for a fourth order singular elliptic problem, Filomat, 32(14) (2018), 5003-5010.
- [19] M. Makvand Chaharlang and A. Razani, A fourth order singular elliptic problem involving p-biharmonic operator, Taiwanese J. Math., 23(3) (2019), 589-599, doi:10.11650/tjm/180906, https://projecteuclid.org/euclid.twjm/1537927424.

- [20] M. Makvand Chaharlang and A. Razani, Existence of infinitely many solutions for a class of nonlocal problems with Dirichlet boundary condition, Commun. Korean Math. Soc., 34(1) (2019), 155–167, https://doi.org/10.4134/CKMS.c170456.
- [21] E. Mitidier, A simple approach to Hardy inequalities, Math. Notes, 67 (2000), 479–486.
- [22] E. Montefusco, Lower semicontinuity of functional via concentration-compactness principle, J. Math. Anal. Appl., 263 (2001), 264–276.
- [23] A. Razani, Weak and strong detonation profiles for a qualitative model, J. Math. Anal. Appl., 276 (2002), 868-881, https://doi.org/10.1016/S0022-247X(02)00459-6.
- [24] A. Razani, Chapman-Jouguet detonation profile for a qualitative model, Bull. Austral. Math. Soc., 66 (2002), 393–403, https://doi.org/10.1017/S0004972700040259.
- [25] A. Razani, Existence of Chapman-Jouguet detonation for a viscous combustion model, J. Math. Anal. Appl., 293 (2004), 551–563, https://doi.org/10.1016/j.jmaa.2004.01.018.
- [26] A. Razani, On the existence of premixed laminar flames, Bull. Austral. Math. Soc., 69 (2004), 415–427, https://doi.org/10.1017/S0004972700036194.
- [27] A. Razani, Shock waves in gas dynamics, Surv. Math. Appl., 2 (2007), 59-89.
- [28] A. Razani, An existence theorem for ordinary differential equation in Menger probabilistic metric space, Miskolc Mathematical Notes, 15 (2014), No. 2, 711–716, DOI: 10.18514/MMN.2014.640.
- [29] A. Razani, Chapman-Jouguet travelling wave for a two-steps reaction scheme, Ital. J. Pure Appl. Math., 39 (2018), 544–553.
- [30] A. Razani, Subsonic detonation waves in porous media, Phys. Scr., 94(8) (2019), 6 pages, https://doi.org/10.1088/1402-4896/ab029b.
- [31] S. Shokooh and G. Afrouzi, Existence results of infinity many solutions for a class of p(x)biharmonic problems, Computational Methods for Differential Equations, 5 (2017), 310–323.
- [32] J. Simon, Regularite de la solution d'une equation non lineaire dans ℝ^N, Jornees d'Analyse NonLineaire, 665 (1978), 205–227.
- [33] S. Taarabti, Z. El Allali, and K. Hadddouch, Eigenvalues of p(x)-biharmonic operator with indefinite weight under Neumann boundary condition, Bol. Soc. Paran. Mat., 36 (2018), 195–213.
- [34] Y. Wang and Y. Shen, Multiple and sign-changing solutions for a class of semilinear biharmonic equation, J. Differential Equations, 246 (2009), 3109–3125.
- [35] H. Xie and J. Wang, Infinitely many solutions for p-Harmonic equation with singular term, J. Inequal. Appl., 2013(9) (2013), https://doi.org/10.1186/1029-242X-2013-9.
- [36] H. Yin and Y. Liu, Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic, Bull. Korean Math. soc., 50 (2013), 1817-1826.
- [37] E. Zeidler, Nonlinear functional analysis and its application, Springer Verlage, Berlin-Heidelberg-Newyork, 1986.

