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Abstract The basic motivation of the present study is to apply the local fractional Sumudu
variational iteration method (LFSVIM) for solving nonlinear wave-like equations
with variable coefficients and within local fractional derivatives. The derivatives
operators are taken in the local fractional sense. The results show that the LESVIM
is an appropriate method to find non-differentiable solutions for similar problems.
The results of the solved examples showed the flexibility of applying this method
and its ability to reach accurate results even with these new differential equations.
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1. INTRODUCTION

Many problems of physics and engineering can be expressed by nonlinear partial
differential equations, we mention some of them, such as, the Schrédinger, the Burgers,
the Bateman-Burgers, the Fokker-Planck, the Korteweg-de Vries, the Klein-Gordon,
the Rosenau-Hyman, the Whitham, the Cahn-Hilliard, the Foam Drainage equation
and other. Given the importance of these partial differential equations and others as
fractionl or local fractional differential equations, many researchers have worked to
develop method to solve them, or find approximate solutions [2, 3, 7, 10, 32, 34]. The
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work of these researchers led to the development of several methods [8, 9, 16, 33],
including the variational iteration method and in the abbreviation (VIM), which is
among the most famous methods developed recently, where it was developed by He
[11, 12, 13].

With the advent of fractional differential equations, the use of this method ex-
panded and began to include the solution of this new type of equations [4, 17, 18, 20,
21, 23], and it was also used to solve another fractional equations which include, local
fractional differential equations, local fractional partial differential equations and local
fractional integro-differential equations [1, 26, 27, 28], or we find them benefit from
the combined with some known transforms, such as: Laplace transform and Sumudu
transform, in order to facilitate the solution of this type of equations, especially non-
linear ones. Among these works we find local fractional laplace variational iteration
method [15, 29, 30] and local fractional Sumudu variational iteration method [31].

The main objective of this work was to apply the method proposed by us in article
[31] to solve local fractional differential equations, where we will apply them here
to solve nonlinear local fractional wave-like equations with variable coefficients, and
these results were compared with the results of other research in the case of o = 1.

This work consists of five basic sections, after the introduction comes the second
section, which includes basic concepts and some properties related to the local frac-
tional derivative and the local fractional Sumudu transform method. In the third
section we presented the basics of this proposed method. In the fourth section we
apply the modified method (LFSVIM) to solve nonlinear local fractional wave-like
equations. In the last section, we finish our work by presenting the conclusion.

2. PRELIMINARIES

In this section, we will introduce the basics of local fractional calculus, and we will
focus on the following concepts: Local fractional derivative, local fractional integral,
some important results and local fractional Sumudu transform.

2.1. Local fractional derivative.

Definition 2.1. The local fractional derivative of ®() of order o at x = x¢ is defined
as ([24, 25])

- 52| - S
where
A%(2(x) — @(x0)) = I(L+0) [(2(x) — 2(x0))]- (2.2)

For any x € (a, ), there exists

o) (x) = DIP(x),
denoted by
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@(x) € DY (e, B).

Local fractional derivative of high order is

m times
(o) (y) = D;") . -~D§<”)<I>(X). (2.3)

2.2. Local fractional integral.

Definition 2.2. The local fractional integral of ®() of order o in the interval [, ]
is defined as ([24, 25])

(o) 1 B
ol 2(x) = m/ O(7)(dr)”
1 ’ N-1
=TTy alme 2 SA), (2.4)
where A1; = 741 — 75, AT = max {A7, A1, Ao, -} and [15,Tj41], To = @,

7~ = 3, is a partition of the interval [a, 8]. For any r € («, 3), there exists
a[gf)(l)(x), denoted by ®(y) € Iia)(avﬁ)'

2.3. Some important results.

Definition 2.3. In fractal space, the Mittage Leffler function, Hyperbolic sine and
hyperbolic cosine are defined as ([14, 24, 25])

too mo
X
E,(x°) = _ <1, 2.5
0= Y i <o (25)
m=0
By (X" Eo (o) = Bo(x +v), 0<o <1, (2.6)
EU(XU)EO’(_UG) = EU(X - U)07 0<o<1, (2'7)
+0oo X(2m+1)o‘
sing (x7) = -1H)m , 0 <1, 2.8
sing (x7) mZ::O( i+ emtne 0°° (28)
too X2ma
7) = B <1 2.
coss (x7) WZ:O( 1) T + 2mo)’ 0<o< (2.9)

2D
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The non-differentiable functions within local fractional derivative and integral are
given as follows (24, 25])

d°x™  T(1+4mo)x™m1

= . 2.10
dx° T(1+ (m—1)o) (2.10)
dG’
ave Be(X7) = Eo(X7)- (2.11)
X
47 sing (x7) = cosy(x7). (2.12)
dx°
i €08, (x7) = —sing (x7). (2.13)
dx°
mo (m+1)o
oI X =X (2.14)

X T(14+mo) T+ (m+1)o)

2.4. Local fractional Sumudu transform. We will introduce the definition of a
local fractional Sumudu transform method and some its basic properties [19].
If there is a new transform operator 'S, : ®(x) — F(u), namely

Lrg, {Z amxm”} = Z (1 4+ mo)amu™’. (2.15)
m=0 m=0
For examples
LF X’ o
: s 2.16
5 {r(1 + 0)} B (2.16)
Definition 2.4. [19] The local fractional Sumudu transform of ®(x) of order o is
1 * I 109
LEg (d =F, zi/E(,—"" dx)?, 0 <1.
Se{2(x)} (u) Tit0) o (~u™"x7) = o~ (dx)7, 0 <o <
(2.17)
The inverse formula of (2.17) is
LEG UL Fy(w)} =®(x), 0<o<1. (2.18)

Theorem 2.5. If “F'S, {®(x)} = F,(u) and 'S, {©(x)} = ¥, (u), then one has

ESe {2(x) + 0 ()} = Folu) + Vo (u). (2.19)

(e
BE
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Proof. Using formula (2.17), we obtain:

S AR + 200} = 5y = T

BN 109) EN169) -
m A [Ea<—u )29 4 g (o) 200 ()

*U U () o
1+U / 24 (dx)

w(x) o
+U)/ uo ()
LFS {200} + “7Ss {e(0)}-
This ends the proof. O

Theorem 2.6. The Sumudu transform of local fractional derivative and integral is
o IfLES {®(x)} = F,(u), then one has

Lrg {d"digx)} _ FJ(U)UZ F(0) (2.20)

From (2.20), we have if L¥'S, {®(r)} = F,(u), so

7 a(y)
LF RS VA 7 ka'(I)(ko) 921
SU{ dx"’ } une [ Zu (2.21)
When n = 2, from (2.21), we get
d* ®(x) 1
LF a”ex)| _ b B o oa()
Sa{ dx } 2o [Fa(U) ®(0) —u’® (0)]. (2.22)

o IfLES {®(x)} = F,(u), then we have

LEg, {OI;%(X)} — w7 F, (u). (2.23)
Proof. see [19] O
3. ANALYTICAL OF SUMUDU VARIATIONAL ITERATION METHOD IN THE CASE
LOCAL FRACTIONAL DERIVATIVE

We consider a general nonlinear local fractional differential equation

LoV (X 7) + NoV (6 7) + RaV (X, 7) = ha(X, 7), 3.1

with L, = % denotes linear local fractional derivative operator of order 2c, R,,
represent linear operator of order less than L., N, denotes nonlinear operator and
ha(x, 7) is the non-differentiable source term.

oo
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We apply the local fractional Sumudu transform on both sides of (3.1), we obtain

Sa [LaV(XaT)] + Sa [Non(XvT) + RO&V(XvT)] = SOé [hOL(Xa 7_)] . (32)

By use the property of the local fractional Sumudu transform, we get

Salvinm) = Vo0 + TV g, fh(y,7)

—u* Sy [NV (x, 7) + RV (x, 7)] . (3.3)

Now, applying the inverse transform on (3.3)

_ *V(x,0) 7 -1, 2a
V =V(x,0)+ oo T(Ta) + 931 (WP*Sy [ha(x,T) = NoV — R, V]) .
(3.4)
Applying g% on both sides of (3.4), we find
oV o~ -1 2c 6aV(Xa O) _
572t 50 Syt (U Sa [NoV 4+ RoV — ha(x,7)]) — Sr0 = 0. (3.5)

The application of the main step of the VIM method (correction functional) [22],
gives the following fundamental formula

9V, _ 9%V (x,0)

Vn — Vn _ I(O‘) o ore or . (3.6
i i O S (u*Se [Na Vi + Ra Vi — ha(x,7)]) (36)
The approximate solution is calculated by the following limit

Vx,) = lim V,(x,7). 3.7)

4. APPLICATIONS OF THIS METHOD

In this part, we apply local fractional Sumudu variational iteration method [31]
for solving some models of nonlinear local fractional wave-like equations with variable
coefficients.

Example 4.1. We consider the following nonlinear local fractional wave-like equa-
tion, which takes the following form

V) = xQQai (viovize) - g2 (Vg“))2 —V,0<a<l, (4.1)

‘rL-Oé

subject to the initial conditions

V(z,0) =0, Vt(a) (z,y,0) = 2. (4.2)

(e
BE
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According to (3.6) and (4.1), we obtain the formula of successive approximations
which given by

Vn+l = Vn - OIEOC)

oV, 0°V(x,0) 9° 20
50~ pra +a aS (u So (4.3)

s aa _ (V,§§>V,§§g>) e (V<2“>) n VnD .

Using the formula (4.3), we obtain the following successive approximations:

tO(
_ 2«
Volz,t) =z 71“(1—1—04)’
(@ 0*Vy B 0%V (x,0) 87 20
Vi=Vo— ol 5 9ra + 9o S So

_ g2 a% (VéﬁVéjﬁ’) o (Vo(jj)) +VOD

Vo= Vi— off”

oV, 8aV(x,0) o 225,
ore ore 8

2 88‘1 (H120) 4 g0 (Vl(fi‘)) +V1D

_ ()| 0°V2  0°V(z,0) 0% 20
Vs = Vo — ol 5o 50 T e St Sa (4.4)
_ 29 (v@v(?a)) ( (m))
ore 2 2xx 2zx ’
and so on.

Depending on the relations (4.5), we get the first terms of this method that take
the following form

(&)
EE
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tOt
t) = x> 45
Vo(x7 ) x F(1+OZ)7 ( )
o tSa
Vi(z,t) = 2 -
iz t) = <F(1—|—a) r(1+3a))’
+o t3a t5a
Va(z,t) = 22 - :
2(,t) = <F(1+a) F(1—|—3a)+F(1+5a))
o t3a t5a t7o¢
Vs(z,t) = 2 - - :
slt) =@ <F(1+a) T(1+30)  T(1+5a) F(1+7a)>
to t3a t5a t?a
Vi (z,t) = 2% — — e
(@,t) == <F(1+a) T(1+3a) T(1+ba) T(t7a)
t(2n+1)a
-1 .
MRS rary 1)a)>
Then the non-differentiable solution of (4.1), is calculated by
V(z,t) = lim V,(z,t) (4.6)
n— oo
e - tSa + t5|1 N t70(
_ x2o¢ lim < I'(l14+a) T'(1+3a) F(ﬁgii)l)a T'(1+7a) ) )
n— oo ++(_1) INEEeTESIY)
This leads to the following result
V(x,t) = 2 sin, (t%). (4.7)

Note that, our solution (4.7) satisfies the initial conditions (4.2), and in the case
o = 1, we obtain the same solution obtained in [5] by Adomian Decomposition Method
and in [6] by homotopy perturbation method.

Example 4.2. Now, we consider a model of two dimensional nonlinear local fractional
wave-like equation which defined by

(20) _ 0% (1 )y (20) > (@) 77(@)
@) __ o o o, o o o
Vi = Gy (V) = ggage (20 VW) =V 0 <<,
(4.8)
or otherwise
(20)
Vi = (VW ety vr) Tovio<ast, 9
Ty

(e
BE
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subject to the initial conditions

V(2,y,0) = Ba(2°y®), V¥ (2,y,0) = B (2%y®). (4.10)

By using (3.6) and (4.8), we obtain the successive approximations

Vg1 = Vo — oI

oV, 0°V(z,y,0) 0% _1/( 24
e T ara T grata (475 (4.10)

nyy

(- veve +amevev) " v
Ty

According to (4.10) and (4.11), we find

tCt
:E o, O E o,
Vo(z,y,t) = Eo(z%y®) + Ea(zy )7F(1+a),
v @]9V 0%V(z,y,0) | 0% i 2
Vi=Vo— ol 5 5o +—6Tasa u?* S, (4.12)

)

(*Vo(fz)%(jy)+z“y“Vém)V(fy))my +VOD

Va=Vi—- Olt(a) ore are ore @

Vi 9°V(x,y,0) | 0° 1(u2°‘S {

(200)
2a 2a o o «@ «@
<_[1(aca:)[1(yy) Ty il(x)il(y))xy L1:|>

)

Va=Vo— o%

0V, 0°V(z,y,0) 0% _1/( 24
ore ore ore Sa (w5

)

(—‘éfx)‘/g(;y) T A )) Y
Ty

2D
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So, the first terms of solution is given by

VO(xvyat) = Ea(xaya) + Ea(xaya)r(ltijwq)a

. o a o 12a 13
Vi(z,y,t) = Ea(z®y®) (1 + rire T tatee) F(1+3a)) )

_ . toc 2a t3o¢ t4u
Va(w,y,t) = Eo(z%y) (1 + riFa) ~ Th+2a) ~ TO13a) T T(+4a)
t50¢
+F(1+5a)) ;

.o o t2a 3a i¥ey
Vs(z,y,1) = Ea(z*y®) (1 + Mita) ~ TiTee) ~ M) T TOTae)
t5a t60¢ t7c¥

+F(1+50¢) T T(1+6a) T(O+7a))>

_ @ .304 S5a (_1)7Lt(2n+1)a
Vn(x7y7t) - Ea<$aya) |:1"(f+a) - l_‘(1t+3o¢) + F(1t+5a) - + m}

+E,(z“y*) [1 - 71)%2”0} .

t2a + t4a _ tGr:v + . + (
T(1+2a) " T(1+4a)  T(1+6a) T(142na)

(4.13)
As the non-differentiable solution is calculate by
Vix,y,t) = le Vi(z,y,t), (4.14)
which
to t3a t50¢
\%4 t)= 1li E,(x%y® — 4.15
@9,t) =t A Baley) | 50y " T 58a) T T 350 1Y
(_1)nt(2n+1)a t2a t4a
Tt rar e | T Tax2a) T TO 140
t6oz (_l)ntha
I'(1+6a) I'(1+ 2na)
This leads to the following result
V(z,y,t) = Eo(x%y®) (sing (t%) + cosq (t)). (4.16)

Note that, in the case 0 = 1, we obtain the same solution obtained in [5] by
Adomian Decomposition Method and in [6] by homotopy perturbation method.

Example 4.3. Finally, we consider this model of nonlinear local fractional wave-like
equation

8204

(20) _ yr2
‘/tt =V ax2a

(Vv ) (1) 2 () s, 0 <<
(4.17)
[c[v]
(0] ¢
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with the initial conditions

V(z,0) = Eo(z®), V) (2,0) = E.(2%).

By using (3.6) and (4.17), we get the following formula

oV, B 0%V (x,0)
ore ore

o 20 32a (0)y7(20) 1 (30)

- 88—@5& ( 25, [ (v,gg ) ;;:a (V;g>)3 — 18V + VnD

And according to the formula (4.19), we obtain the following first terms

Vn+1 - Vn - OItga)

0% o 1f 2ag [y2. 0% (@), 20)(Ga)
- 8?5 (U Sa |:Vv0 (91'20‘ (‘/Oz VO %www)

_ (f;sal(umks*a[(%m ) o ()’ ‘18%5+%D

)

o~ V1 _ 8“V(az,0)
ore are

o« o 9% a)1,(20)1 (30
7%Sa ( 2 S |: 128 20 (Vl )Vl(jz)xfl(jzg)]>

_ 88%3‘;1 <u2o‘Sa [ ( 1(04))2 88220; (V(a)) 18V} + Vl})

2D

(4.18)

(4.19)
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9°Va 9V (x,0)

Va=Ve— ol |53 o (4.20)
O (if o 2 0% (1 (a)y (2001, (30)
- a?sa (u aSOt |:Vv2 m (Vv2:z Vv2ww Véwza:)

g (s () 75 () - v ]

Using the previous formulas (4.20), we get the first terms of this method as follows

@

Vol ) = Fa(a®) (14 rifsey )
@ 2a 3a
Vi(z,t) = Eo(2%) (1 + vgay t rogee r(lt+3a)> ,

2a

- a tot t t3cx t4o( t5c¥
Va(z,1) = Eo(z%) (1 + tire T Tarze T Tame T o T F(1+5a)> ,

[e% 2a 3a 4o 5a
Va(z,1) = Eqo(z%) (1 T rare T F(1t+2a) + F(1t+3a) + F(1t+4oz) + F(1t+5a)
ot ) -
(4.21)

And therefore, then the non-differentiable solution of (4.17) is calculated by

n—r00

N ) n tka
V(x,t) = Eq(z®) lim kzzom (4.22)

we know that this limit is

V(z,t) = Bo(a®) Eq(t®). (4.23)

Which represent the exact solution of equation (4.17).
Depending on the results presented in [14], we can write the solution (4.23) as
follows

V(z,t) = Bo(a® + ). (4.24)

Note that, in the case o = 1, we obtain the same solution obtained in [5] by Adomian
Decomposition Method and in [6] by homotopy perturbation method.

(e
BE
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5. CONCLUSION

In this work, we applied the local fractional Sumudu variational iteration method
(LFSVIM) to solve some nonlinear wave-like equations with variable coefficients and
within local fractional derivative. Through this work done, we can say that this
algorithm is easy to use during the solution and provides us with a solution in the
form of a series that converges rapidly towards the exact solution if it exists, as
shown from examples that we have solved it though it looks very complicated. From
the results obtained, it can be concluded that this algorithm is powerful and effective
in applying to this type of equations, and thus can be applied to other nonlinear local
fractional partial differential equations with fixed or variable coefficients.

REFERENCES

[1] D. Baleanu, J. A. T. Machado, C. Cattani, M. C. Baleanu, and X. J. Yang, Local Fractional
Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within
Local Fractional Operators, Abst. Appl. Anal.; A. ID: 535048, 2014 (2014), 6 pp.

[2] A. Bouhassoun and M. Hamdi Cherif, Homotopy Perturbation Method For Solving The Frac-
tional Cahn-Hilliard Equation, J. Interdiscip. Math., 18(5) (2015), 513-524.

[3] H. Bulut, H. M. Baskonus, and F. B. Belgacem, The Analytical Solutions of Some Fractional Or-
dinary Differential Equations By Sumudu Transform Method, Abs. Appl. Anal., A. ID: 203875,
2013 (2013), 6pp.

[4] C. Chun and S. Abbasbandy, New Application of Variational Iteration Method for Analytic
Treatment of Nonlinear Partial Differential Equations, World Appl. Sci. J., 16(12) (2012),
1677-1681.

[5] M. Ghoreishi, Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with
Variable Coefficient, Appl. Math. Sci., 4(49) (2010), 2431-2444.

[6] S. Gupta, D. Kumar, and J. Singh, Application of He’s homotopy perturbation method for
solving nonlinear wave-like equations with variable coefficients, Int. J. Adv. Appl. Math. Mech.,
1(2) (2013), 65-79.

[7] M. Hamdi Cherif, K. Belghaba, and D. Ziane, Homotopy Perturbation Method for Solving the
Fractional Fisher’s Equation, Int. J. Anal. appl., 10(1) (2016), 9-16.

[8] M. Hamdi Cherif and D. Ziane, A new technique for solving systems of nonlinear fractional
partial differential equations, Int. J. Anal. appl., 15(2) (2017), 188-197.

[9] M. Hamdi Cherif and D. Ziane, Variational iteration method combined with new transform to
solve fractional partial differential equations, Univ. J. Math. Appl., 1(2) (2018), 113-120.

[10] S. H. M. Hamed, E. A. Yousif, and A. I. Arbab, Analytic and Approzimate Solutions of the
Space-Time Fractional Schrdinger Equations by Homotopy Perturbation Sumudu Transform
Method, Abs. Appl. Anal, A. ID: 863015, 2014 (2014), 13pp.

[11] J. H. He, A new approach to nonlinear partial differential equations, Comm. Nonlinear Sci.
Numer. Simul., 2 (1997), 230-235.

[12] J. H. He, A wariational iteration approach to nonlinear problems and its applications, Mech.
Appl., 20(1) (1998), 30-31.

[13] J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl.
Math. Comput., 114(2/3) (2000), 115-123.

[14] M. S. Hu, R. P. Agarwal, and X. J. Yang, Local Fractional Fourier Series with Application to
Wave Equation in Fractal Vibrating String, Abs. Appl. Anal, A. ID: 567401, 2012 (2012), 15pp.

[15] H. K. Jassim, Local fractional variational iteration transform method to solve partial differential
equations arising in mathematical physics, Int. J. Adv. Appl. Math. Mech., 3(1) (2015), 71-76.

[16] N. A. Khan, O. Abdul Razzaq, and M. Ayyaz, On the solution of fuzzy differential equations
by Fuzzy Sumudu Transform, Nonlinear Engineering., 4(1) (2015), 49-60.

(&)
EE



CMDE Vol. 9, No. 3, 2021, pp. 774-787 787

(17]

(18]

(19]

20]

(21]
(22]
(23]
(24]
23]
(26]
27]

28]

29]

(30]

(31]

(32]

(33]

(34]

R. Y. Mollig and M. S. M. Noorani, Solving the Fractional Rosenau-Hyman Equation via Vari-
ational Iteration Method and Homotopy Perturbation Method, Int. J. Diff. Equ., 2012, A. ID
472030 (2012), 14 pp.

A. S. V. Ravi Kanth and K. Aruna, He’s variational iteration method for treating monlinear
singular boundary value problems, Comp. Math. Appl., 60 (2010), 821-829.

H. M. Srivastava, A.K. Golmankhaneh, D. Baleanu, and X.J. Yang, Local Fractional Sumudu
Transform with Application to IVPs on Cantor Sets, Abs. Appl. Anal., A. ID: 176395, 2014
(2014), Tpp.

V. Turut and N. Giize, On solving Partial Differential Equations of Fractional Order by Using
the Variational Iteration Method and Multivariate Padé Approximations, Europ. J. Pure. Appl.
Math., 6(2) (2013), 147-171.

A. Wazwaz, The variational iteration method for rational solutions for KdV, K(2,2), Burgers,
and cubic Boussinesq equations, J. Comp. Appl. Math., 207 (2007), 18-23.

G. C. Wu, Variational iteration method for solving the time-fractional diffusion equations in
porous medium, Chin. Phys B., 21(12) (2012), 1-5.

G. C. Wu and E. W. M. Lee, Fractional variational iteration method and its application, Physics
Letters A., 374 (2010), 2506-2509.

X. J. Yang, Fractional Functional Analysis and Its Applications, Asian Academic, Hong Kong,
2011.

X. J. Yang, Local Fractional Calculus and Its Applications, World Science Publisher, New York,
USA, 2012.

X. J. Yang and D. Baleanu, Fractal Heat Conduction Problem Solved by Local Fractional Vari-
ational Iteration Method, Thermal Science., 17(2) (2013), 625-628.

X. J. Yang, D. Baleanu, Y. Khan, and S. T. Mohyud-din, Local Fractional Variational Iteration
Method for Diffusion and Wave Equation on Cantor Sets, Rom. J. Phys., 59(1-2) (2014), 36-48.
Y. J. Yang, D. Baleanu, and X. J. Yang, A Local Fractional Variational Iteration Method for
Laplace Equation within Local Fractional Operators, Abs. Appl. Anal., A. ID: 202650, 2013
(2013), 6 pp.

Y. J. Yang and L. Q. Hua, Variational Iteration Transform Method for Fractional Differential
Equations with Local Fractional Derivative, Abs. Appl. Anal., A. ID: 760957, 2012 (2014), 9
pp-

A. M. Yang, J. Li, H. M. Srivastava, G. N. Xie, and X. J. Yang, Local Fractional Laplace Varia-
tional Iteration Method for Solving Linear Partial Differential Equations with Local Fractional
Derivative, Dis. Dyn. Nat. Soc., A. ID:365981, 2014 (2014), 8 pp.

D. Ziane, Local Fractional Sumudu Variational Iteration Method for Solving Partial Differential
Equations with Local Fractional Derivative, Int. J. Open Prob. Compt. Math., 10(3) (2017), 29-
42.

D. Ziane, K. Belghaba, and M. Hamdi Cherif, Fractional homotopy perturbation transform
method for solving the time-fractional KdV, K(2,2) and Burgers equations, Int. J. Open Prob.
Compt. Math., 8(2) (2015), 63-75.

D. Ziane, M. Hamdi Cherif, D. Baleanu, K. Belghaba, and M. Al Qurashi, An Efficient Algorithm
for Solving Nonlinear Systems of Partial Differential Equations with Local Fractional Operators,
Punjab Univ. J. Math., 51(9) (2019), 85-99.

D. Ziane, T. Mohyeldin Elzaki, and M. Hamdi Cherif, Elzaki transform combined with vari-
ational iteration method for partial differential equations of fractional order, Fund. J. Math.
Appl., 1(1) (2018), 102-108.



	1. Introduction
	2. Preliminaries
	2.1. Local fractional derivative
	2.2. Local fractional integral
	2.3. Some important results
	2.4. Local fractional Sumudu transform

	3. Analytical of Sumudu variational iteration method in the case local fractional derivative
	4. Applications of this method
	5. Conclusion
	References

