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Abstract In this paper, the interpolating moving least-squares (IMLS) method is discussed.
The interpolating moving least square methodology is an effective technique for the

approximation of an unknown function by using a set of disordered data. Then
we apply the IMLS method for numerical solution of Volterra–Fredholm integral
equations, and finally some examples are given to show the accuracy and applicability
of the method.
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1. Introduction

The theory and application of integral equations is an important subject within
applied mathematics. Integral equations of various types appear in many fields of
science and engineering. Differential equations with transformed arguments or neural
type differential equations can be transformed to VolterraFredholm integral equations
[1]. There are several techniques for proximating the solution of such problems, but
very few references have been found in technical literature dealing with VolterraFred-
holm integral equations. Yalcinbas [25] applied Taylor series and Ghasemi et al.[12]
used the homopoty perturbation method for solving some of these equations. In
[26] I think he meant his variational iteration method is employed to solve nonlinear
VolterraFredholm integral equations. In [5] Numerical solution of VolterraFredholm
integral equations by moving least square method and Chebyshev polynomials are
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used.Triangular functions (TF) method for the solution of nonlinear VolterraFred-
holm integral equations [8]. Lancaster and Salkauskas [6] presented the interpolating
moving least-squares (IMLS) method by using a singular weight function. The shape
function of the IMLS method satisfies the property of the Kronecker δ function, and
then the meshless method based on the IMLS method can apply the essential bound-
ary condition directly without any additional numerical effort. Kaljevic and Saigal
presented an improved formulation of the EFG method based on the IMLS method
[3]. Maisuradze et al. applied the IMLS method to fit potential energy surfaces in
one dimensional chemical application [7]. Netuzhylov used the meshfree collocation
method based on the IMLS method to solve boundary value problems [13]. By revis-
ing the formulae of the IMLS method, Ren et al. presented the interpolating bound-
ary element-free (IBEF) method [14, 15] and the interpolating element-free Galerkin
(IEFG) method [16, 17] for two-dimensional potential and elasticity problems. Based
on the IMLS method and the CVMLS approximation, Ren et al. also presented the
complex variable interpolating moving least-squares (CVIMLS) method [18, 19]. To
overcome the singularity of the weight function in the IMLS method, Wang et al.
presented the improved interpolating moving least-squares (IIMLS) method with the
nonsingular weight function [20, 21, 22, 23]. In order to study the mathematical the-
ory of meshless methods based on the IMLS method, it is certainly also important
to analyze error estimates of the approximation function of the IMLS method and
its derivatives. In the MLS approximation, the weight function is bounded. But
in the IMLS method, the weight function is singular. Thus the error estimates of
the approximation function of the IMLS method and its derivatives are more diffi-
cult than the ones of the MLS approximation. The advantage of the IMLS method
is that the meshless method which is constructed based on the IMLS method can
apply the essential boundary conditions directly and easily. The error estimate of
the approximation function of the IMLS method was presented in a one-dimensional
case, and the error estimates of the first and second order derivatives are also given [6].

The rest of this paper is organized as follows: the outline of the IMLS method is
discussed in section 2. In section 3, the proposed method is employed on nonlinear
VolterraFredholm integral equations. An error analysis of the method is demonstrated
in section 4. Several test problems are solved and the results are shown in section 5.
Section 6 completes this paper with a brief conclusion.

2. Interpolating moving least-squares method

Let X = {x1,x2, . . . ,xN} be a set of all nodes in the bounded domain Ω ⊂ Rn

where N is the number of nodes. The parameter ρI denotes the radius of the domain
of influence of xI , and ∥ · ∥ denotes the Euclidean norm. The domain of influence of
xI is defined by ΩI = {x : ∥x − xI∥ ≤ ρI , x ∈ Ω}. Let ρ = maxxI∈X {ρI}. For a
given point x ∈ Ω, define the index set τx = {I| ∥x− xI | ≤ ρI ,xI ∈ X}.

Let u(x) be the function of the field variable defined in Ω. The approximation
function of u(x) is denoted by uh(x). In order to let the approximation uh(x) in the
IMLS method satisfy the interpolating property, Lancaster and Salkauskas [6] defined
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a singular weight function, i.e.

w(x,xI) = w(x− xI) =

{
∥x− xI∥−α, ∥x− xI∥ ≤ ρI ,

0, others,
(2.1)

where the parameter α is an even positive integer.
For the weight function in (2.1), when ∥x− xI∥ ≤ ρI and x ̸= xI . We have

lim
ρI→0

w(x,xI) = +∞. (2.2)

Then if the maximum radius of the domains of influence were very small, the values
of the weight function would be very large, which is disadvantageous for a numerical
method. However, from the MLS approximation, we know that, in order to guarantee
the precision of the numerical solutions, the fine distribution of nodes in the domain
is used, which makes the radius of influence small. Then a proper value of the radius
of influence must be selected. To overcome the disadvantage of the weight function
of (2.2), in this paper, we use the following weight function

w(x,xI) = w(x− xI) =

{
∥x−xI

ρI
∥−α, ∥x− xI∥ ≤ ρI ,

0, others.
(2.3)

Define the inner product

⟨f, g⟩x =
∑
I∈τx

w(x,xI)f(xI)g(xI), ∀f, g ∈ C0(Ω), (2.4)

where the subscript x denotes a point in Ω. Then the corresponding norm at x is

∥f∥x =

[ ∑
I∈τx

w(x,xI)f
2(xI)

] 1
2

. (2.5)

Let p0(x) ≡ 1, p1(x), . . . , pm̄(x) be given basis functions, where m̄ + 1 denotes the
number of the basis functions. We will generate a new set of basis functions from
these given basis. First normalizing p0(x) and let

p̃0(x; x̄) =
1[∑

I∈τx
w(x,xI)

] 1
2

. (2.6)

Then we can generate new basis functions orthogonal to p̃0(x; x̄) as

p̃i(x, x̄) = pi(x̄)− Spi(x), i = 1, 2, . . . , m̄, (2.7)

where Spi is a linear operator defined as

Spi(x) =
∑
I∈τx

v(x,xI)pi(xI), (2.8)

and

v(x,xI) =
w(x,xI)∑

J∈τx
w(x,xJ)

. (2.9)

The function v(x,xI) has the following properties [6].

Lemma 2.1. If the weight function of (2.3) is used, then v(x,xI) ∈ C∞(Ω̄), and
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(a) v(xI ,xJ) = δIJ , ∀I, J ∈ τx,
(b)

∑
I∈τx

v(x,xI) = 1, ∀x ∈ τx,

(c) 0 ≤ v(x,xI) ≤ 1, ∀x ∈ Ω, and v(x,xI) = 0 if and only if x =
xJ , J ̸= I,

(d) ∂v(xI ,xJ )
∂x = 0, ∀I, J ∈ τx.

To obtain the expression of the approximation function uh(x) which satisfies the
interpolating property, Lancaster and Salkauskas [6] defined a local approximation,
i.e.,

uh(x, x̄) = p̃0(x; x̄)a0(x) +
m̄∑
i=1

p̃i(x; x̄)ai(x), (2.10)

where x̄ is the point in the domain of influence of x, and ai(x), i = 1, 2, . . . , m̄, are
the unknown coefficients of the basis functions.

For a given x, the difference between the local approximation function uh(x, x̄)
and the function u(x̄), will be minimized by a weighted least-squares method. Then
define the weighted discrete L2 norm as

J(x) =
∑
I∈τx

w(x,xI)
[
uh(x,xI)− uI

]2
, (2.11)

where w(x,xI), as shown in (2.3), is a weight function with compact support, xI for
I ∈ τx are the nodes with domains of influence that cover the point x, and uI = u(xI).

By minimizing the weighted discrete L2 norm of (2.11) we have

⟨u(·)− uh(x, ·), p̃0⟩x =0, (2.12)

⟨u(·)− uh(x, ·), p̃i⟩x =0, i = 1, 2, . . . , m̄. (2.13)

In terms of the orthogonality, (2.12) and (2.13) can be rewritten as

a0(x) = ⟨u, p̃0⟩x, (2.14)

a0(x)⟨p̃0, p̃j⟩x +

m̄∑
i=1

ai(x)⟨p̃i, p̃j⟩x = ⟨u, p̃j⟩x, j = 1, 2, . . . , m̄. (2.15)

According to (2.6) and the definition of inner product, we have

p̃0(x, x̄)a0(x) =
1[∑

I∈τx
w(x,xI)

] 1
2

⟨u, p̃0⟩x =
∑
I∈τx

v(x,xI)uI = Su. (2.16)

Then (2.15) reduces to

m̄∑
i=1

ai(x)⟨p̃i, p̃j⟩x = ⟨u− Su, p̃j⟩x, j = 1, 2, . . . , m̄. (2.17)

In [6], the unknown parameters ai(x) (i = 1, 2, . . . , m̄) are solved from (2.17). In fact,
by the following lemma, (2.17) can be simplified.

Lemma 2.2. [24]. If the weight function of (2.3) is used, for all x ∈ Ω,

⟨Su, p̃i⟩x = 0, i = 1, 2, . . . , m̄. (2.18)



834 M. ASGARI, A. MESFORUSH, AND A. NAZEMI

According to lemma 2.2, (2.17) can be simplified as

m̄∑
i=1

ai(x)⟨p̃i, p̃j⟩x = ⟨u, p̃j⟩x, j = 1, 2, . . . , m̄. (2.19)

(2.19) is simpler than the corresponding expression in [6], and can be rewritten as

A(x)a(x) = Fw(x)u, (2.20)

where

aT (x) = (a1(x), a2(x) . . . , am̄(x)), (2.21)

uT =(u1, u2, . . . , uN ), (2.22)

A(x) =Fw(x)F
T (x), (2.23)

F(x) =


p̃1(x;x1) p̃1(x;x2) . . . p̃1(x;xN )
p̃2(x;x1) p̃2(x;x2) . . . p̃2(x;xN )

...
...

. . .
...

p̃m̄(x;x1) p̃m̄(x;x2) . . . p̃m̄(x;xN )

 , (2.24)

and Fw(x) = ω̄kJ (x)m̄×N is a m̄×N matrix, and

ω̄kJ(x) =


w(x,xJ)p̃k(x;xJ ), x ̸= xJ ,

∑
I∈τx,I ̸=J

w(xJ ,xI) [pk(xJ)− pk(xI)] , x = xJ .
(2.25)

Then we can obtain

a(x) = A−1(x)Fw(x)u. (2.26)

Then the local approximation function can be obtained as

uh(x, x̄) = Su+
m̄∑
i=1

ai(x)p̃i(x; x̄). (2.27)

Thus the global interpolating approximation function of u(x) can be obtained as

uh(x) = Su+
m̄∑
i=1

ai(x)gi(x) ≡ Φ(x)u =
N∑

I=1

ϕI(x)u(xI), (2.28)

where Φ(x) is a matrix of shape functions,

Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕN (x)) = vT + pT (x)A−1(x)Fw(x), (2.29)

where

vT =(v(x,x1), v(x,x2), . . . , v(x,xN )), (2.30)

pT (x) = (g1(x), g2(x), . . . , gm̄(x)), (2.31)

gi(x) = pi(x)− Spi(x). (2.32)
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Then the first partial derivatives of the shape functions of the IMLS method can be
obtained as

ϕ,i(x) = vT
,i + pT

,i(x)A
−1(x)Fw(x) + pT (x)A−1(x)Fw,i(x) + pT (x)A−1

,i (x)Fw(x),

(2.33)

where

Fw(x) = ω̄kJ,i(x)m̄×N , (2.34)

ω̄kJ,i(x) =

w,i(x,xJ)p̃k(x;xJ) + w(x,xJ)p̃k,i(x;xJ )(x), x ̸= xJ ,∑
I∈τx,I ̸=J

w,i (x,xI) [pk (xJ )− pk (xI)] , x = xJ , (2.35)

A−1
,i (x) = −A−1(x)A,i(x)A

−1(x). (2.36)

(2.29) is the shape function of the IMLS method.
The matrix A(x) is defined in (2.20) is of order m̄× m̄ and plays an important role
in the IMLS method. The solution of (2.20) is unique if the rank of A(x) is m̄.
Therefore, we need the following assumption [10, 11].

Assumption 2.3. For any x ∈ Ω, assume that the matrix A(x) is invertible,i.e., the
data point set {xI ∈ X, I ∈ τx} is Pm(Rn)-unisolvent.

3. The proposed method

In this section, we employ the IMLS method for solving the integral equations.
The general form of these equations can be considered as :

u(x) = F

(
x,

∫ b

a

K1(x, t, u(t)) dt,

∫ x

a

K2(x, t, u(t)) dt

)
, (3.1)

where u is the unknown function, a and b are real finite numbers, K1 andK2 are called
kernel functions, F : R×Cp ×Cp → Cpand kernel functions K1,K2 : R×R×Cp →
Cpare given continuous mappings and satisfying in the following conditions:

∥F(x, u1, u2)−F(x, v1, v2)∥ ⩽ β1∥u1 − v1∥+ β2∥u2 − v2∥, ∀u1, u2, v1, v2 ∈ Cp,
(3.2)

∥K1(x, u(x), θ1)−K1(x, u(x), θ2)∥ ⩽ γ1∥θ1 − θ2∥, ∀θ1, θ2 ∈ Cp, (3.3)

∥K2(x, u(x), θ1)−K2(x, u(x), θ2)∥ ⩽ γ2∥θ1 − θ2∥, ∀θ1, θ2 ∈ Cp, (3.4)

∥K1(x, u(x), θ)∥ ⩽ c1∥θ∥, ∀θ ∈ Cp, (3.5)

∥K2(x, u(x), θ)∥ ⩽ c2∥θ∥, ∀θ ∈ Cp, (3.6)

where β1, β2, γ1, γ2, c1 and c2 are real constant values.
Now, to employ the IMLS method let us consider n nodal points in the interval

[a, b] as a = x1 ≤ x2 ≤ · · · ≤ xn = b. The distribution of nodes could be selected
regularly or randomly. Then instead of u, we can replace uh(x) from (2.28). So (3.1)
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becomes

uh(x) =F

(
x,

∫ b

a

K1(x, t, u
h(t)) dt,

∫ x

a

K2(x, t, u
h(t)) dt

)
, (3.7)

or equivalently

n∑
i=1

ϕi(x)ui=F

(
x,

∫ b

a

K1(x, t,

n∑
i=1

ϕi(t)ui) dt,

∫ x

a

K2(x, t,

n∑
i=1

ϕi(t)ui) dt

)
. (3.8)

The integral domain [a, x] must be transferred to a fixed [a, b]. For this purpose, the
following transformation has been considered

ξ(x,θ) =
x− a

b− a
θ +

b− x

b− a
a. (3.9)

Employing this transformation, (3.8) becomes

n∑
i=1

ϕi(x)ui = F

(
x,

∫ b

a

K1(x, t,
n∑

i=1

ϕi(t)ui) dt ,

∫ b

a

KT
2 (x, ξ(x, θ),

n∑
i=1

ϕi(ξ(x, θ))ui) dθ

)
,

(3.10)

or equivalently

n∑
i=1

ϕi(x)ui = F

(
x,

∫ b

a

K1(x, θ,
n∑

i=1

ϕi(θ)ui) dθ ,

∫ b

a

KT
2 (x, ξ(x, θ),

n∑
i=1

ϕi(ξ(x, θ))ui) dθ

)
,

(3.11)

where

KT
2 =

x− a

b− a
K2. (3.12)

Assume that (3.11) holds at xj ,

n∑
i=1

ϕi(xj)ui = F

(
xj ,

∫ b

a

K1(xj , θ,

n∑
i=1

ϕi(θ)ui) dθ ,

∫ b

a

KT
2 (xj , ξ(xj , θ),

n∑
i=1

ϕi(ξ(xj , θ))ui) dθ

)
, j = 1, 2, . . . , n.

(3.13)

Using a m1-points quadrature formula with the coefficients {θk} and weights {ωk}
in interval [a, b] for numerically solving in (3.13) yields

n∑
i=1

ϕi(xj)ûi = F

(
xj ,

m1∑
k=1

ωkK1(xj , θk,
n∑

i=1

ϕi(θk)ûi) ,

m1∑
k=1

ωkK
T
2 (xj , ξ(xj , θk),

n∑
i=1

ϕi(ξ(xj , θk))ûi)

)
, j = 1, 2, . . . , n,

(3.14)

Where ûi are the approximate quantities of ui when we use a quadrature rule instead
of the exact integral. By solving (3.14) with an appropriate numerical solver for
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the nonlinear systems, we can obtain the values of ûi. Then the value of u(x) is
approximated by

u(x) ≃ uh(x) =
n∑

i=1

ϕi(x)ûi, ∀x ∈ [a, b] . (3.15)

4. The error analysis

In this section, the error estimate for the proposed method is obtained. Since
the error estimate of the method is strictly connected to the error estimate of the
IMLS method, first we introduce the error estimate of the IMLS method. The error
estimate of the approximation function of the IMLS method was presented in a one-
dimensional case, and the error estimates of the first and second order derivatives are
also given [6]. In the current work, we employ the results for error estimates of the
IMLS method in [24].

Let Bx(y) = {y| |y − x| ⩽ µρ, y ∈ Ω ⊂ R}, where 1 < µ < 2 is a constant. Define
the index set H = {I|xI ∈ X, xI ∈ Bx(y)}. Suppose h is a sufficient small number
such that τx ⊂ H and τx+h ⊂ H. When x /∈ X and w(x, xI) ̸= 0, there certainly exist

constants cβ such that
∣∣∣dw(x,xI)

dxβ

∣∣∣ ⩽ cβ

ρβ
I

. In our subsequent discussion of this section,

the basis functions are selected as p0(x) = 1, p1(x) = x, . . . , pm(x) = xm.

Hypothesis 4.1. There exist constants cε and cI such that ρ ⩽ cεε and ρ ⩽ cIρI
respectively. This hypothesis shows that, for ∀x ∈ Ω, the number of nodes in the
domain of influence of x is finite.

Hypothesis 4.2. For ∀x ∈ Ω, there exists m+1 elements in the set τx ∩ τx+h. Sup-
pose d be a positive integer. Let Cd(Ω) be the set of all the functions whose derivative
of order d exists and is continuous in Ω .

The convergence order of the local approximation uh(x, y) can be obtained from the
known results on the best leastsquares approximation. Thus, from the error estimates
of the Lagrange interpolation polynomial, we have the following theorem.

Theorem 4.3. [24]. If u ∈ Cm+1(Ω̄), and Hypotheses 4.1 and 4.2 are satisfied, for
each x ∈ Ω, there exists a constant C, which is independent of ρ, such that

|uh(x, y)− u(y)| ⩽ C∥u(m+1)∥L∞(Ω)ρ
m+1, ∀y ∈ Bx(y),

In particular, when y = x, we have

∥uh(x)− u(x)∥L∞(Ω) ⩽ C∥u(m+1)∥L∞(Ω)ρ
m+1. (4.1)

Also, we assume the numerical quadrature satisfies the condition described in the
following [2].
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QA: There exists positive number η, small enough and independent of i and mesh-size,
such that∣∣∣∣∫

ω

Q dx−
∫ ∗

ω

Q dx

∣∣∣∣ ⩽ η |ω| ∥Q∥L∞(ω), (4.2)

where the notation
∫ ∗

(, ) denotes the integrals which are computed using a quadra-
ture formula and the constant η is a bound for the error of the numerical quadrature
formula [4].

Let us consider the Volterra-Fredholm integral equation (3.1) with conditions (3.2)-
(??) and (b − a)(β1γ1 + β2γ2) ∈ [0, 1). By defining the integral operator £(u(x)) in
the Banach space Cp as:

£(u(x)) = F

(
x,

∫ b

a

K1(x, t, u(t)) dt,

∫ x

a

K2(x, t, u(t)) dt

)
, (4.3)

then the Banach fixed point theorem guarantees that, under certain assumptions (
(3.2)- (??)), £ has a unique fixed point, the Volterra-Fredholm integro-differential
equation has exactly one solution. Also, assume that u(x) is the solution of (3.1) ,
uh(x) is the solution of (3.7) and uh

∗(x) is the solution of (3.14).

Theorem 4.4. Let u ∈ Cm+1(Ω̄) where Ω is a bounded set in R, and F , K1 and
K2 satisfy the conditions of equation of (3.1) and [a, x] ⊆ Ω = [a, b]. Assume that the
numerical quadrature formula satisfies (4.2). Also, suppose that Hypotheses 4.1 and
4.2 are satisfied. Then we have

∥£(u(x))−£(uh
∗(x))∥L∞(Ω) ⩽ C1∥u∥L∞(Ω) + C2∥u(m+1)∥L∞(Ω) (4.4)

Consequently, we obtain

∥u− uh
∗∥L∞(Ω) ⩽ C1∥u∥L∞(Ω) + C2∥u(m+1)∥L∞(Ω) (4.5)

where C1 = (b−a)(β1c1 +β2c2)η and C2 = (b−a) ((β1c1 + β2c2)η + (β1γ1 + β2γ2)) Cρm+1.

Proof. In the proof, we use Theorem.4.3 and the Lipschitz condition for F , K1 ,
K2. From definition of £, we have

∥£(u(x))−£(uh
∗(x))∥L∞(Ω) ⩽ ∥£(u(x))−£(uh(x))∥L∞(Ω) + ∥£(uh(x))−£(uh

∗(x))∥L∞(Ω)

(4.6)

First, we obtain
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∥£(u(x))−£(uh(x))∥L∞(Ω)

=

∥∥∥∥F (x, ∫ b

a

K1(x, t, u(t))dt,

∫ x

a

K2(x, t, u(t))dt

)
−F

(
x,

∫ b

a

K1(x, t, u
h(t))dt,

∫ x

a

K2(x, t, u
h(t))dt

)∥∥∥∥
L∞(Ω)

⩽ β1

∥∥∥∥∫ b

a

K1(x, t, u(t))dt−
∫ b

a

K1(x, t, u
h(t))dt

∥∥∥∥
L∞(Ω)

+ β2

∥∥∥∥∫ x

a

K2(x, t, u(t))dt−
∫ x

a

K2(x, t, u
h(t))dt

∥∥∥∥
L∞(Ω)

⩽ β1(b− a)
∥∥∥K1(x, t, u(t))−K1(x, t, u

h(t))
∥∥∥
L∞(Ω)

+ β2(b− a)
∥∥∥K2(x, t, u(t))−K2(x, t, u

h(t))
∥∥∥
L∞(Ω)

⩽ (b− a)β1γ1∥u(t)− uh(t)∥L∞(Ω) + (b− a)β2γ2∥u(t)− uh(t)∥L∞(Ω)

= (b− a) (β1γ1 + β2γ2) ∥u(t)− uh(t)∥L∞(Ω)

⩽ (b− a) (β1γ1 + β2γ2) Cρm+1∥u(m+1)∥L∞(Ω),

In addition, we can write

∥£(uh(x))−£(uh
∗(x))∥L∞(Ω)

=

∥∥∥∥F (x, ∫ b

a

K1(x, t, u
h(t))dt,

∫ x

a

K2(x, t, u
h(t))dt

)
−F

(
x,

∫ b∗

a

K1(x, t, u
h(t))dt,

∫ x∗

a

K2(x, t, u
h(t))dt

)∥∥∥∥
L∞(Ω)

⩽ β1

∥∥∥∥∫ b

a

K1(x, t, u
h(t))dt−

∫ b∗

a

K1(x, t, u
h(t))dt

∥∥∥∥
L∞(Ω)

+ β2

∥∥∥∥∫ x

a

K2(x, t, u
h(t))dt−

∫ x∗

a

K2(x, t, u
h(t))dt

∥∥∥∥
L∞(Ω)

⩽ β1(b− a)η
∥∥∥K1(x, t, u

h(t))
∥∥∥
L∞(Ω)

+ β2(b− a)η
∥∥∥K2(x, t, u

h(t))
∥∥∥
L∞(Ω)

⩽ (b− a) (β1c1 + β2c2) η∥uh∥L∞(Ω)

= (b− a) (β1c1 + β2c2) η
(
∥u∥L∞(Ω) + ∥u− uh∥L∞(Ω)

)
⩽ (b− a) (β1c1 + β2c2) η

(
∥u∥L∞(Ω) + Cρm+1∥u(m+1)∥L∞(Ω)

)
,
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Consequently, from the two last obtained inequalities and (4.6), we can get the
following inequality:

∥£(u(x))−£(uh
∗(x))∥L∞(Ω)

⩽ ∥£(u(x))−£(uh(x))∥L∞(Ω) + ∥£(uh(x))−£(uh
∗(x))∥L∞(Ω)

⩽ (b− a) (β1γ1 + β2γ2) Cρm+1∥u(m+1)∥L∞(Ω)

+ (b− a) (β1c1 + β2c2) η
(
∥u∥L∞(Ω) + Cρm+1∥u(m+1)∥L∞(Ω)

)
,

⩽ (b− a) (β1c1 + β2c2) η∥u∥L∞(Ω)

+ (b− a)Cρm+1 ((β1c1 + β2c2)η + (β1γ1 + β2γ2)) ∥u(m+1)∥L∞(Ω)

= C1∥u∥L∞(Ω) + C2∥u(m+1)∥L∞(Ω)

Using from the fixed point property of u and uh
∗ , we can write

∥u− uh
∗∥L∞(Ω)

= ∥£(u(x))−£(uh
∗(x))∥L∞(Ω)

⩽ (b− a) (β1c1 + β2c2) η∥u∥L∞(Ω)

+ (b− a)Cρm+1 ((β1c1 + β2c2)η + (β1γ1 + β2γ2)) ∥u(m+1)∥L∞(Ω)

= C1∥u∥L∞(Ω) + C2∥u(m+1)∥L∞(Ω)

It completes the proof. □

5. Numerical results

In this section, the numerical results for the one-dimensional Fredholm ,Volterra
and VolterraFredholm integral equations have been depicted by the IMLS method.
To measure the accuracy of the method, the maximum error has been used with the
following definition:

Maximum error : ∥e∥∞ = max|u(j)− uexact(j)|.

To show the rate of convergence of the new method, the values of ratio with the
following formula have been reported

Ratio =
∥eN−1∥∞
∥eN∥∞

.

In numerical computation of this section, the nodes are arranged regularly, and the
radius of the domain of influence of node xi is determined by ρI = dmax |XI −XI−1| ,
dmax is a positive scalar. The value of dmax must be chosen so that the matrix of
(2.23) is invertible.

For the tests we used the linear and the quadratic basis and weight function (2.3).
Also, for the numerical quadrature rule we used the five or seven -point Gauss Le-
gendre quadrature formula. All routines are written in Matlab 2017 and run on a
Intel Core i5 PC Laptop with 1.8 GHz of CPU and 4 GB of RAM.
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Example 5.1. [9].Consider the following Fredholm integral equation:

λu(x)−
∫ 1

0

u(x) dx = g(x), 0 ≤ x ≤ 1,

where λ = 5. Suppose the exact solution

u(x) = x2
√
x,

and appropriate right hand side. The maximum error values are given for different
values of N in Table 1 for both linear and quadratic cases for the collocation node
points. The numerical and exact values solution of this equation is shown in Fig 1.

Table 1. Numerical results Example 5.1.

N Linear(m = 1) Quadratic(m = 2)

∥e∥∞ Ratio Time ∥e∥∞ Ratio Time

5 1.10× 10−3 − 1.64 7.49× 10−5 − 1.70
9 7.24× 10−4 1.52 1.66 2.10× 10−5 3.57 1.71
17 2.43× 10−4 2.98 1.74 2.13× 10−6 9.86 1.77
33 9.07× 10−5 2.68 1.83 4.70× 10−7 4.53 1.92
65 1.00× 10−5 9.07 2.15 3.02× 10−7 1.56 2.17
129 4.47× 10−6 2.24 2.73 3.14× 10−7 0.96 2.80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
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0.2

0.4

0.6

0.8
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1.2

y

Numerical
Exact

Figure 1. The IMLS approximation of degree 2 with 65 points for
Example 5.1.

We compare the obtained numerical results in Table 1 with obtained ones in [9].It
is seen that the maximum error ∥e∥∞ of the proposed method in scattered points
reported in Table 1, is lower then ones in[9].
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Example 5.2. As the second example, consider the following VolterraFredholm in-
tegral equation:

u(x)=ex − 1− x+

∫ x

0

u(t) dt+

∫ 1

0

xu(t) dt.

The exact solution of this equation is u(x) = x ex. The results for different m,N s,
are given in Table 2 and for the numerical quadrature rule we used the seven-point
Gauss Legendre quadrature formula. also Fig 2. shows the absolute error for N = 201
, m = 2.
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E
rr
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×10-8

Figure 2. The IMLS approximation error of degree 2 with 201
points for Example 5.2.

Table 2. Numerical results Example 5.2.

N Linear(m = 1) Quadratic(m = 2)

∥e∥∞ Ratio Time ∥e∥∞ Ratio Time

5 3.53× 10−1 − 1.80 7.90× 10−3 − 1.85
11 5.41× 10−2 6.52 1.88 5.21× 10−4 15.16 1.98
21 1.57× 10−2 3.45 2.07 1.02× 10−4 5.11 2.07
51 3.10× 10−3 5.06 2.28 4.40× 10−5 2.32 2.41
101 5.56× 10−4 5.58 2.94 2.44× 10−7 180.33 3.05
201 1.40× 10−4 3.97 4.61 9.16× 10−9 26.64 4.71

Example 5.3. [5].In this example, we solve the following nonlinear VolterraFredholm
integral equation:

u(x) = f(x) +
1

4

∫ x

0

(x− t)u2(t) dt+

∫ 1

0

(1 + t)u(t) dt.

The analytic solution of this problem is u(x) = x2 sinx and f(x) is chosen accordingly.
The results for different m,N s are given in Table 3.
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Table 3. Numerical results Example 5.3

N Linear(m = 1) Quadratic(m = 2)

∥e∥∞ Ratio Time ∥e∥∞ Ratio Time

5 1.34× 10−2 − 1.96 1.14× 10−3 − 1.98
9 8.20× 10−3 1.63 2.00 3.76× 10−4 3.72 2.01
13 4.70× 10−3 1.74 2.04 1.19× 10−4 3.16 2.05
23 3.04× 10−4 1.55 2.16 5.64× 10−6 21.10 2.17
45 1.71× 10−4 1.78 2.42 1.26× 10−6 4.48 2.48
65 1.12× 10−4 1.53 2.74 3.62× 10−7 3.48 2.77

Example 5.4. In this example consider the following integral equation

u(x) = 1−
∫ x

0

(x− t)u(t) dt+

∫ π

0

u(t) dt,

with the exact solution u(x) = cosx. Table 4 shows the numerical results for Example
4.

Table 4. Numerical results Example 5.4

N Linear(m = 1) Quadratic(m = 2)

∥e∥∞ Ratio Time ∥e∥∞ Ratio Time

7 3.75× 10−2 − 1.86 5.10× 10−3 − 1.95
11 2.32× 10−2 1.62 1.87 1.60× 10−3 3.19 1.98
21 5.40× 10−3 4.30 1.88 1.36× 10−4 11.76 2.00
41 1.40× 10−3 3.86 1.97 1.82× 10−5 7.47 2.06
51 1.00× 10−3 1.40 1.99 1.75× 10−5 1.04 2.11
101 3.68× 10−4 2.72 2.36 1.80× 10−6 9.72 2.58

Example 5.5. As the last example, we consider the following Volterra integral equa-
tion

u(x) = 2x e−x(x+ 1)− 2x+
√
x+

∫ x

0

2txe−u2(t) dt,

where the unknown solution is u(x) =
√
x. Table 5, shows the maximum errors for

different values of N , also Fig 3 shows the absolute error for N = 401 and m = 2.
The results show the efficiency of the method to approximate the nonlinear integral
equations.

6. Conclusion

In this paper, a numerical scheme based on interpolating moving least square
method has been used for the approximate solution of the linear and nonlinear Fred-
holm, Volterra and Volterra- Fredholm integral equations. The method is a meshless
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Table 5. Numerical results Example 5.5

N Linear(m = 1) Quadratic(m = 2)

∥e∥∞ Ratio Time ∥e∥∞ Ratio Time

5 4.90× 10−3 − 2.01 7.90× 10−4 − 2.06
9 1.80× 10−3 2.72 2.02 3.50× 10−4 2.26 2.08
21 2.03× 10−4 8.87 2.19 2.33× 10−5 15.02 2.27
51 3.38× 10−5 6.01 2.55 3.71× 10−6 6.28 2.65
101 1.02× 10−5 3.31 3.45 2.48× 10−7 14.96 3.32
201 2.54× 10−6 4.02 5.73 9.07× 10−8 2.73 5.58
401 6.14× 10−7 4.14 29.54 2.42× 10−9 37.48 30.36
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Figure 3. The IMLS approximation error of degree 2 with 401
points for Example 5.5.

method, because it requires no domain elements for the interpolation or approxima-
tion. The numerical results given in the previous section demonstrate the efficiency
and accuracy of this scheme.
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