تعداد نشریات | 43 |
تعداد شمارهها | 1,272 |
تعداد مقالات | 15,720 |
تعداد مشاهده مقاله | 51,821,935 |
تعداد دریافت فایل اصل مقاله | 14,663,035 |
آنالیز حساسیت 9 مدل جهت تخمین توان پنلهای فتوولتایی مونوکریستال و پلیکریستال | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 21، دوره 51، شماره 4 - شماره پیاپی 97، بهمن 1400، صفحه 193-202 اصل مقاله (2.55 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.10923 | ||
نویسندگان | ||
محمد شفیعی دهج* 1؛ مصطفی زمانی محی آبادی2؛ سیدمحمد صادق حسینی3 | ||
1استادیار، گروه مهندسی مکانیک، دانشگاه ولی عصر(عج)، رفسنجان، ایران | ||
2مربی، گروه مهندسی شیمی، دانشگاه ولی عصر(عج)، رفسنجان، ایران | ||
3استادیار، گروه مهندسی شیمی، دانشگاه ولی عصر(عج)، رفسنجان، ایران | ||
چکیده | ||
از آنجا که میزان انرژی تولید شده توسط سیستم های فتوولتایی به صورت نمایی در حال رشد است، نیاز به پیش بینی توان تولید آنها بسیار مهم تر از گذشته است. در این مقاله با استفاده از شبکه عصبی، مدل سازی سیستم های فتوولتایی پنل های مونو و پلی کریستال نیروگاه5/2 کیلووات سایت خورشیدی دانشگاه ولیعصر(عج) رفسنجان انجام شده است. هدف از این تحقیق به دست آوردن مدلی بهینه می باشد. مدل های به دست آمده با استفاده از شبکه های عصبی توسط داده های جمع آوری شده یک ساله سایت مورد نظر، باهم مقایسه گردیدند. در این مدل ها ورودی ها، دمای پنل و تابش مستقیم خورشید و خروجی ها توان تولیدی پنل های مونوکریستال و پلی کریستال می باشند. آنالیز حساسیت برای انواع ورودی و خروجی و نیز برای تعداد لایههای مختلف نرونها و توابع مختلف نیز بررسی گردید. نتایج حاصله گویای مدلسازی دقیق پنل ها توسط شبکه عصبی مورد استفاده می باشد. نتایج نشان می دهد که مدل با ورودی دما و تابش و توان خروجی پنل مونوکریستال و پلیکریستال، از همه مدلها بهتر می باشد. | ||
کلیدواژهها | ||
مدلسازی؛ شبکه عصبی؛ آنالیز حساسیت؛ پنلهای فتوولتایی؛ ورودیها؛ توان خروجی | ||
مراجع | ||
[1] Mirzaei M., and Zamani Mohiabadi, M., A comparative analysis of long-term field test of monocrystalline and polycrystalline PV power generation in semi-arid climate conditions, Energy for Sustainable Development, Vol. 38, pp. 93-101, 2017. [2] Shi J., Lee W. J., Liu Y., Yang Y., & Wang P. Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications, Vol. 48, No. 3, pp.1064-1069, 2012. [3] Kostylev V., & Pavlovski A. Solar power forecasting performance – towards industry standards, 1st International Workshop on the Integration of Solar Power into Power Systems, Aarhus, Denmark , 2011. [4] Thomson M., and Infield D. G., Impact of widespread photovoltaics generation on distribution systems, IET Renewable Power Generation, Vol. 1, No.1, pp. 33-40, 2007. [5] Tan Y. T., and Kirschen D. S., Impact on the power system of a large penetration of photovoltaic generation,” IEEE Power Engineering Society General Meeting, pp. 1-8, 2007. [6] Aguiar L. M., Pereira B., Lauret P., Díaz F., and David M. Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting, Renewable Energy, Vol. 97, pp. 599-610, 2016. [7] d'Alessandro V., Di Napoli F., Guerriero P., & Daliento S, An automated high-granularity tool for a fast evaluation of the yield of PV plants accounting for shading effects, Renewable Energy, Vol. 83, pp. 294-304, 2015. [8] Reindl T., Walsh W., Yanqin Z., & Bieri M. Energy meteorology for accurate forecasting of PV power output on different time horizons. Energy Procedia, Vol. 130, pp.130-138, 2017. [9] Malvoni M., De Giorgi M. G., & Congedo P. M. Forecasting of PV Power Generation using weather input data‐preprocessing techniques. Energy Procedia, Vol. 126, pp.651-658, 2017. [10] Junior J. G. D. S. F., Oozeki T., Ohtake H., Shimose K. I., Takashima, T., & Ogimoto, K., Forecasting regional photovoltaic power generation-a comparison of strategies to obtain one-day-ahead data, Energy Procedia, Vol. 57, pp. 1337-1345, 2014. [11] Wang F., Mi Z., Su S., & Zhao H. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters, Energies, Vol. 5, No. 5, pp. 1355–1370, 2012. [12] Gutierrez-Corea F. V., Manso-Callejo M. A., Moreno-Regidor M. P., and Manrique-Sancho, M. T. Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations, Solar Energy, Vol. 134, pp. 119-131,2016. [13] Sivaneasan B., Yu C. Y., & Goh K. P. Solar forecasting using ANN with fuzzy logic pre-processing. Energy procedia, Vol. 143, pp. 727-732., 2017. [14] Liu L., Liu D., Sun Q., Li H., & Wennersten R. Forecasting power output of photovoltaic system using a BP network method. Energy Procedia, Vol. 142, pp. 780-786, 2017. [15] Mandal P., Madhira S. T. S., Meng J., & Pineda R. L. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Procedia Computer Science, Vol. 12, pp.332-337, 2012. [16] Saberian A., Hizam H., Radzi M. A. M., Ab Kadir M. Z. A., and Mirzaei M. Modelling and prediction of photovoltaic power output using artificial neural networks. International journal of Photoenergy, Vol.20, No 14,pp.1-12, 2014. [17] Hadi R. S., and Abdulateef O. F. Modeling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks Considering Ambient Conditions, Association of Arab Universities Journal of Engineering Sciences, Vol. 25, Vol. 5, pp. 623-638, 2018. [18] Nespoli A., Ogliari E., Leva S., Massi Pavan A., Mellit A., Lughi V., & Dolara A. Day-ahead photovoltaic forecasting: A comparison of the most effective techniques. Energies, Vol. 12, No. 9, pp. 1621- 1632, 2019. [19] Moravaj Z., Azarakhsh J., Modeling Impact Energy of Ranked Steels Using Artificial Neural Networks, Journal of Modeling in Engineering, Semnan University, Vol. 13, No. 41, pp. 137-146, 2014. [20] Firouznia R., Amjadi N., Short-term load forecast using load time series and neural network analysis, Journal of Modeling in Engineering, Semnan University, Vol. 2, No. 16, pp. 23-32, 2008. [21] Mellit A., Saglam S., Kalogirou S. A., Artificial neural network-based model for estimating the produced power of a photovoltaic module, Renewable Energy, Vol. 60, pp. 71–78, 2013. [22] Almonacid F., Rus C., Hontoria L., Fuentes M., and Nofuentes G., Characterisation of Si-crystalline photovoltaic modules by artificial neural networks, Renewable Energy, Vol.34, No. 4, pp. 941–949, 2009. [23] Monteiro R. V., Guimarães G. C., Moura F. A., Albertini M. R., and Albertini M. K., Estimating photovoltaic power generation: Performance analysis of artificial neural networks, Support Vector Machine and Kalman filter, Electric Power Systems Research, Vol. 143, pp. 643-656, 2017. [24] Zamani Mohiabadi M., The instantaneous prediction of the global solar radiation in the Rafsanjan city, Iranian journal of energy, Vol. 16, No. 4, pp. 15-31, 2012. [25] Menhaj M. B., Fundamentals of Neural Networks, Amirkabir University, pp.37-40, 2013. [26] Zamani Mohiabadi M., and Mirzaei M., Comparison of two intelligent models to estimate the instantaneous global solar radiation in semi-arid climate conditions: Application in Iran, Journal of Earth System Science, Vol. 126, No. 5, pp. 75-88, 2017 [27] Agatonovic-Kustrin S., and Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of pharmaceutical and biomedical analysis, Vol. 22, No. 5, pp.717-727, 2000. [28] Jacovides C. P. Reply to comment on Statistical procedures for the evaluation of evapotranspiration models, Agricultural water management, Vol. 3, pp. 95-97, 1997. | ||
آمار تعداد مشاهده مقاله: 531 تعداد دریافت فایل اصل مقاله: 262 |