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Abstract The initial attached cell layer in multispecies biofilm growth is studied in this paper.
The corresponding mathematical model leads to discuss a free boundary problem

for a system of nonlinear hyperbolic partial differential equations, where the initial

biofilm thickness is equal to zero. No assumptions on initial conditions for biomass
concentrations and biofilm thickness are required. The data that the problem needs

are the concentration of biomass in the bulk liquid and biomass flux from the bulk

liquid. The differential equations are converted into an equivalent system of Volterra
integral equations. We use Newton-Raphson method to solve the nonlinear system

of Volterra integral equations (SVIEs) of the second kind. This method converts the

nonlinear system of integral equations into a linear integral equation at each step.
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1. Introduction

Jones [12], by using electron microscope, discovered in 1969 that a biofilm is char-
acterized by several kinds of cells. Since then, the combination of high resolution
three-dimensional imaging techniques, specific molecular fluorescent stains, molecu-
lar reporter technology, and biofilm-culturing apparatus have shown that biofilms are
not simply a passive assemblage of cells that are stuck to surfaces, but structurally
and dynamically complex biological systems [11].

Mathematical modelling of biofilm growth was extensively performed during the
past decades. Essentially, two different classes of models have been developed: con-
tinuum models, e.g. among others [8, 14], and differential-discrete models, e.g. [2, 13].
In principle, methods of statistical mechanics can be used to derive macroscopic equa-
tions from the underlying description at the cellular scale [6].
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Usually, an initial nonzero thickness in biofilm growth is assumed, and the for-
mation of an attached cell layer is neglected, Figure. 1(a) and (b). Nevertheless,
this biological process can last several days or months, since it depends on many
factors such as physical and chemical characteristics of substratum, nutrient con-
centration, hydrodynamic conditions and concentration of planktonic bacteria in the
bulk. Therefore, the formation of an attached cell layer is very important in environ-
mental industrial application for wastewater treatment, in particular in the start-up
of fixed-growth treatment reactors.

Berardino D’Acunto and Luigi Frunzo, in 2012 [7], show that this biological process
is described by a free boundary problem for nonlinear hyperbolic equations where the
initial biofilm thickness is zero.

The mathematical model, introduced by Berardino D’Acunto and Luigi Frunzo, in
2012, described the complete free boundary problem [7]. The differential equations
are converted into an equivalent system of Volterra integral equations. Subsequently,
an existence and uniqueness theorem is proved by the classical fixed point theorem
and suitable weighted norms. They show that the solutions are positive and the sum
of fraction volumes is equal to 1. In addition, it is proved that the free boundary is
an increasing function of time [7] (see Fig. 2).

The application of some numerical method in solving nonlinear system of equation
analyzed in [1, 4, 5, 9, 10]. In this paper, we solve free boundary problem for an initial
cell layer in multispecies biofilm formation by the Newton-Raphson method. At first,
we introduce the linear operator F on the system of integral equations, then obtain
Frechet derivative. Therefore, one can write the iterative formula of Newton-Rafson
Method. We show that Kantorovich theorem’s conditions satisfy on Newton-Rafson
formula.

Figure 1. Schematic biofilm formation. (a) Planktonic cells; (b)
Attached cell layer; (c) Cell proliferation; (d) Mature biofilm; (e)
Detachment.

2. Preliminaries

2.1. Mathematical modelling of an initial cell layer. Consider the initial phase
in one-dimensional multispecies biofilm growth. Let fi(z, t) be the volume fraction
of the microbial species i,

∑n
i=1 fi = 1, ρi the constant density, Xi = ρifi(z, t)

the concentration of the microorganism i such that X = (X1, . . . , Xn), rM,i(z, t,Xi)
the specific growth rate, and u(z, t) the velocity of the microbial mass, L(t) biofilm
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Figure 2. Free boundary problem.

thickness. In addition, the biomass flux from bulk liquid to biofilm is denoted by
σ(t). This is the most used convention. On the other hand, if an opposite definition
is adopted, as in [6], σ(t) must be replaced by −σ(t) and must represent the biomass
flux from biofilm to bulk liquid. The initial growth process for multispecies biofilms
in one space dimension may be described by the following free boundary problem

∂Xi(z, t)

∂t
+ u(z, t)

∂Xi(z, t)

∂z
= ρirM,i(z, t,X)−Xi(z, t)

∂u(z, t)

∂z
,

∂u(z, t)

∂z
=

n∑
i=1

rM,i(z, t,X), 0 < z ≤ L(t), t > 0,

L̇(t) = u(L(t), t)− σ(t), t > 0.

The following boundary conditions will be associated to the above system:

Xi(L(t), t) = ψi(t), i = 1, 2, ..., n, u(0, t) = 0, σ(t) ≥ σL > 0,

L(0) = 0.

Consider the following relations (similar to [7]):

xi(t0, t) = Xi(c(t0, t), t), X = (x1, x2, · · · , xn), (2.1)

Φi(X(t0, t), c(t0, t), t) = Fi(c(t0, t), t,X(t0, t)), i = 1, · · · , n, (2.2)

Φn+1(X(t0, t), c(t0, t), ct0(t0, t), t) = G(c(t0, t), t,X(t0, t))ct0(t0, t), (2.3)

Φn+2 = Φn+1. (2.4)

By using relations (2.1)-(2.4) and converting differential equations into an equivalent
system of Volterra integral equations; one can rewrite it as follows:

xi(t0, t) = ψi(t0) +

∫ t

t0

Φi(X(t0, τ), c(t0, τ), τ)dτ, (2.5)

c(t0, t) =

∫ t0

0

σ(θ)dθ +

∫ t0

0

dθ

∫ θ

0

Φn+1(X(τ, θ), c(τ, θ), cτ (τ, θ), θ)dτ

+

∫ t

t0

dθ

∫ t0

0

Φn+1(X(τ, θ), c(τ, θ), cτ (τ, θ), θ)dτ, (2.6)
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ct0(t0, t) = σ(t0) +

∫ t

t0

Φn+2(X(t0, θ), c(t0, θ), ct0(t0, θ), θ)dθ, (2.7)

L(t0) =

∫ t0

0

σ(θ)dθ +

∫ t0

0

dθ

∫ θ

0

G(c(τ, θ), θ,X(τ, θ))cτ (τ, θ)dτ, (2.8)

where i = 1, 2, . . . , n and 0 ≤ t0 ≤ t ≤ T . Note that equation (2.8) is separated
from system (2.5), (2.6), (2.7). Thus, this system is solved firstly. Then, the solution
is replaced in equation (2.8) to obtain L(t). The following theorem holds for system
(2.5), (2.6), (2.7).

Theorem 2.1. [7]. Assume ψi, σ, i = 1, . . . , n, continuous and φj Lipschitz continu-
ous ψi, σ ∈ C([0, T ]), i = 1, ..., n,

|φi(x, c, t)− φi(x̃, c̃, t)| ≤ Li(
n∑
h=1

|xh − x̃h|+ |c− c̃|), i = 1, ..., n, (2.9)

|φi(x, c, ct0 , t)−φi(x̃, c̃, c̃t0 , t)| ≤ Li(
n∑
h=1

|xh− x̃h|+ |c− c̃|+ |ct0 − c̃t0 |), (2.10)

where i = n+1, n+2. Then, there exists a unique continuous solution xi, c, ct0 ∈ C(I),
to Volterra system (2.5), (2.6), (2.7), where I = {(t0, t) : 0 ≤ t0 ≤ t ≤ T}, T > 0.

Corollary 2.2. [7]. Under the same hypotheses as Theorem 2.1 the function L ∈
C([0, T ]).

3. problem statement

Now according to nonlinear system of Volterra integral equations (2.5), (2.6), (2.7),
we have

~X = G0 +

∫ t

t0

κ(t, τ, ~X(τ))dτ, (3.1)

where

~X =



x1(c(t0, t), t)
x2(c(t0, t), t)

...
xn(c(t0, t), t)

c(t0, t)
ct0(t0, t)


,

and
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G0 =



ψ1(c(t0, t))
ψ2(c(t0, t))

...
ψn(c(t0, t))
L(t0)
σ(t0)


,

and

κ(t, τ, ~X(τ)) =



Φ1( ~X(c(t0, τ), τ), c(t0, τ), τ)

Φ2( ~X(c(t0, τ), τ), c(t0, τ), τ)
...

Φn( ~X(c(t0, τ), τ), c(t0, τ), τ)∫ t0
0

Φn+1( ~X(c(θ, τ), τ), c(θ, τ), cθ(θ, τ), τ)dθ

Φn+2( ~X(c(t0, τ), τ), c(t0, τ), ct0(t0, τ), τ)


.

and 0 < θ ≤ t0 < t.

3.1. Newton-Raphson method. For applying Newton’s method to linearize the
problem, define

S = {V : V ∈ C([0, T ]n+2)}. (3.2)

Let U and V be two Banach spaces. Assume F : U → V is Fr’echet differentiable.
We are interested in solving the equation F (u) = 0.
The Newton method reads as follows:

(1) Choose an initial guess u0 ∈ U .
(2) For n = 0, 1, . . . , compute

un+1 = un − [F (un)]−1F (un). (3.3)

One can show that the Newton method is locally convergent with quadratic con-
vergence. The main drawback of the result is the dependence of the assumptions on
the root of the equation, which is the quantity to be computed. The Kantorovich
theory overcomes this difficulty. A proof of the following theorem can be found in
[15].

Theorem 3.1. (Kantorovich) Suppose that

(a) F : D(F ) ⊂ U → V is differentiable on an open convex set D(F ), and the
derivative is Lipschitz continuous:

‖F ′(u)− F ′(v)‖ ≤ L‖u− v‖, ∀u, v ∈ D(F ).

(b) For some u0 ∈ D(F ), [F ′(u0)]−1 exists and is a continuous operator from V to
U , and such that h = abL ≤ 1

2 for some a ≥ ‖[F ′(u0)]−1‖ and

b ≥ ‖[F ′(u0)]−1F (u0)‖. Denote

t∗ =
1− (1− 2h)

1
2

aL
,
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t∗∗ =
1 + (1− 2h)

1
2

aL
.

(c) u0 is chosen so that B(u1, r) ⊂ D(F ), where r = t∗ − b.
Then the equation (3.3) has a solution u∗ ∈ B(u1, r) and the solution is unique in
B(u0, t

∗∗) ∩D(F ); the sequence un converges to u∗, and we have the error estimate

‖un − u∗‖ ≤
[1− (1− 2h)

1
2 ]2

n

2nah
, n = 0, 1, 2, . . . .

The Kantorovich theorem provides sufficient conditions for the convergence of the
Newton method.

We aim to solve (3.1) by Newton-Raphson method. We define linear operator F
as follow:

F = ~X −G0 −
∫ t

t0

κ(t, τ, ~X(τ))dτ. (3.4)

Now we obtain Fr’echet derivative of F . According to definition of Fr’echet derivative
of F ;

F ′( ~X(t))v(t) = lim
h→0

F ( ~X(t) + hv(t))− F ( ~X(t))

h
, (3.5)

we have

F ′( ~X(t))v(t) = lim
h→0

1

h
(hv(t)−

∫ t

t0

κ(t, τ, ~X(τ)+hv(t))−κ(t, τ, ~X(τ))dτ). (3.6)

So,

F ′( ~X(t))v(t) = v(t) +

∫ t

t0

∂κ

∂ ~X
(t, τ, ~X(τ))v(τ)dτ. (3.7)

By using Newton- Raphson’s method we linearize the problem (3.1), and applying
(3.7) and (3.4); we have:

δn(t)+

∫ t

t0

∂κ

∂ ~X
(t, τ, ~Xn(τ))δn(τ)dτ = − ~Xn(t)+G0+

∫ t

t0

κ(t, τ, ~Xn(τ))dτ, (3.8)

where δn(t) = ~Xn+1(t)− ~Xn(t) and n = 0, 1, 2, . . ..

According to (3.8), δn(t) is only an unknown function. By choosing the suitable

initial function ~X0(t), the system of linear integral equations are solved by common

numerical methods. Thus, one can obtain ~X1(t) and similar to first step of method,
~X2(t), ~X3(t), . . . is obtainable.
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3.2. Checking convergence of Newton-Raphson’s method. In this section, we
show that the Kantorovich theorem’s conditions satisfy on linear operator F .

Remark 3.2. (1) According to theorem 2.1, ~Xn(t) is continuous. Then, F is
continuous.

(2) Iterration formula (3.8) will converge to the exact solution, if the initial func-

tion ~X0(t), is satisfied in conditions of the Kantorovich theorem.

By choosing D(F ) = S in (3.2), it is clear that condition (c) of the Kantorovich
theorem is automatically satisfied. For condition (b) it is sufficient to show that
abL ≤ 0.5. Purposely, we use the following theorems.

Theorem 3.3. Geometric series theorem:
Let V be a Banach space, F ∈ L(V ). Assume ‖F‖ < 1. Then I − F is a bijection on
V , its inverse is a bounded linear operator,

(I − F )(−1) =

∞∑
n=0

Fn,

and

‖(I − F )(−1)‖ ≤ 1

1− ‖F‖
. (3.9)

Proof. see [3]. �

Corollary 3.4. Let V be a Banach space, F ∈ L(V ). Assume for some integer
m ≥ 1 that ‖Fm‖ < 1. Then I−F is a bijection on V , its inverse is a bounded linear
operator, and

‖(I − F )(−1)‖ ≤ 1

1− ‖Fm‖

m−1∑
i=0

‖F i‖. (3.10)

Proof. see [3]. �

By Kantorovich theorem F ′ must be satisfied Lipschitz continuous and F ′ must
be a bounded and an invertible operator. For this purpose, we use geometric series
theorem and corollary 3.4. Then by definition

M = max
0<t<T

| ∂κ
∂ ~X

(t, τ, ~X(τ))|,

where T is final time, and (3.7), we have

(F ′( ~X(t))− I)v(t) =

∫ t

t0

∂κ

∂ ~X
(t, τ, ~X(τ))v(τ)dτ. (3.11)

According to corollary 3.4, F ′ is an invertible operator and

‖(F ′ − I)k‖ ≤ MkT k

k!
.
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If MkTk

k! < 1, then

‖(F ′)(−1)‖ ≤ 1

1− ‖(F ′ − I)m‖

m−1∑
i=0

‖(F ′ − I)i‖.

Therefore, (F ′)(−1) is a bounded operator.

Also, if we let ~X0(t) ∈ S such that ‖F ( ~X0(t))‖ ≤ 1, then

‖[F ′( ~X0(t))](−1)F ( ~X0(t))‖ ≤ ‖[F ′( ~X0(t))](−1)‖ ≤ a.

Thus condition (b) is satisfied, by choosing a suitable value for h = a2L ≤ 0.5 such
that L is Lipschitz constant and ′a′ define as follow:

‖(F ′( ~X0(t)))(−1)‖ ≤ 1

1− ‖(F ′ − I)m‖

m−1∑
i=0

‖(F ′ − I)i‖ = a.

Now, we investigate condition (a) of Kantorovich theorem. We show that F ′ is
Lipschitz continuous. According to (3.7), we have

‖F ′( ~X2)− F ′( ~X1)‖∞ = |
∫ t

t0

∂κ

∂ ~X
(t, τ, ~X1(τ))− ∂κ

∂ ~X
(t, τ, ~X2(τ))v(τ)dτ |

≤
∫ t

t0

| ∂
2κ

∂ ~X2
(t, τ, ~X3(τ))| ~X2 − ~X1|v(τ)|dτ

≤ L| ~X2 − ~X1|,

where

L = max
∀v∈D(F )

[

∫ t

t0

| ∂
2κ

∂ ~X2
(t, τ, ~X3(τ))v(τ)|dτ.

By choosing suitable initial function ~X0(t), which is satisfied in MkTk

k! < 1, such

that M = max0<t<T | ∂κ∂ ~X (t, τ, ~X0(τ))| and choosing h = abL ≤ 0.5 such that ′a′ and
′b′ as follows:

‖(F ′( ~X0(t)))(−1)‖ ≤ 1

1− ‖(F ′ − I)m‖

m−1∑
i=0

‖(F ′ − I)i‖ = a,

and

‖(F ′( ~X0(t)))(−1)F ( ~X0(t))‖ ≤ b,

and realize condition (c) of Kantorovich theorem. We conclude the Newton-Raphson’s
method which used in (3.4), will converge to the exact solution of the system of integral
equations (2.5), (2.6), (2.7).
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4. Conclusions

We propose the Newton-Raphson method to solve the nonlinear system of Volterra
integral equations (SVIEs) of the second kind. The advantage of this method is con-
verting of the nonlinear system of integral equations into a linear integral equation
at each step. The Kantorovich theorem provides sufficient conditions for the con-
vergence of the Newton-Raphson method. Finally, we showed that the operator F
is satisfied on Kantorovich theorem’s conditions. In future work, we would present
some numerical examples to verify the theoretical analysis which is announced in this
paper.
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