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Abstract In this paper, an efficient numerical method is used to provide the approximate so-

lution of distributed-order fractional partial differential equations (DFPDEs). The
proposed method is based on the fractional integral operator of fractional-order

Bernoulli-Legendre functions and the collocation scheme. In our technique, by ap-
proximating functions that appear in the DFPDEs by fractional-order Bernoulli func-

tions in space and fractional-order Legendre functions in time using Gauss-Legendre

numerical integration, the under study problem is converted to a system of algebraic
equations. This system is solved by using Newton’s iterative scheme, and the nu-

merical solution of DFPDEs is obtained. Finally, some numerical experiments are

included to show the accuracy, efficiency, and applicability of the proposed method.
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ator, Numerical method.
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1. Introduction

Fractional differential equations (FDEs) and fractional integro-differential equa-
tions (FIDEs) were widely used in modeling many areas of physics and engineering,
for instance fluid mechanics, electrical networks, signal processing, diffusion, reaction
processes [4, 14, 21], non-linear oscillation of earthquake [12], fluid-dynamic traffic
model [11] and fractional nonlinear complex model for seepage flow in porous me-
dia [10]. Thus, many researchers have been interested in finding accurate numerical
schemes for solving FDEs and FIDEs for example Fourier transforms method [8],
eigenvector expansion method [39], homotopy analysis method [5], variational iter-
ation method [30], Adomian decomposition method [25], power series method [31],
orthonormal Bernoulli polynomials method [38], orthonormal Bernstein polynomials

Received: 25 November 2019 ; Accepted: 04 May 2020.
∗ corresponding.

799



800 P. RAHIMKHANI AND Y. ORDOKHANI

method [24], hybrid of block-pulse and parabolic functions method [23], Bernoulli
wavelets method [32], fractional-order orthogonal Bernstein polynomials method [22],
fractional-order Legendre wavelets method [36] and Müntz-Legendre wavelet method
[37].
Distributed-order fractional derivatives indicate fractional derivatives that are inte-
grated over the order of the differentiation within a given range. Distributed-order
fractional differential equations (DFDEs) can be considered as a natural generalization
of the single order and multi-term fractional different equations. DFDEs attracted a
considerable attention in the modeling of various physical and engineering phenomena
for example diffusion, viscoelasticity, oscillator, and wave phenomena [1, 2, 16].
Because of the computational complexity of distributed-order fractional derivatives,
the exact analytical solution of DFDEs is hardly available. Therefore, in the last
decades many researchers have been attracted to deal with the numerical solution
of this class of problems. For example: in [28], the diffusion equation of distributed
order with Dirichlet, Neumann and Cauchy boundary conditions was analyzed. In
[17], Luchko studied the existence and uniqueness results of boundary value problems
for the generalized DFDEs. Meerschaert et al. [20] presented explicit strong solutions
and stochastic analogues for DFDEs. In [6], authors investigated the Langevin-like
equations of distributed-order and considered their possible applications. Gorenflo
et al. [9] obtained a representation of the fundamental solution of a distributed
order time-fractional diffusion-wave equation by applying the Fourier and Laplace
transforms. Mashayekhi and Razzaghi [18] used hybrid functions of block-pulse func-
tions and Bernoulli polynomials for solving DFDEs. In [13], authors presented two
spectrally schemes, namely the Petrov-Galerkin spectral scheme and the fractional
spectral collocation scheme for DFDEs. Morgado et al. [27] used Chebyshev collo-
cation scheme for solving DFDEs. Zaky [40] applied a Legendre collocation scheme
for numerical solution of distributed-order fractional optimal control problems. Zaky
and Machado [41] introduced an efficient numerical scheme based on the pseudo-
spectral method and the Jacobi-Gauss-Lobatto integration formula for solving an
unconstrained convex distributed optimal control problem governed by DFDE. Au-
thors [15] solved the DFDEs by using the Gauss-Legendre quadrature formula and
Laguerre Petrov-Galerkin spectral scheme. In this research, we used the fractional-
order Legendre-Bernoulli functions for the numerical solution of partial differential
equations with distributed order. Some of the most important advantages of the
proposed scheme are listed in the following:

• Fractional-order functions can well reflect the properties of fractional-order
differential equations.

• Well known Legendre-Bernoulli polynomials are a special case of fractional-
order Legendre-Bernoulli functions.

• Fractional-order functions have two degrees of freedom but polynomials have
one degree of freedom.



CMDE Vol. 9, No. 3, 2021, pp. 799-817 801

• A small value of fractional-order Legendre-Bernoulli functions is needed to
achieve high accuracy and satisfactory results.

• By applying this scheme, the consideration problem is transformed into a sys-
tem of algebraic equations that can be solved via a suitable numerical method.

• This method is very convenient, since the initial and boundary conditions are
taken into account automatically.

The paper is organized as follows: in Section 2, we introduce some necessary defi-
nitions of fractional calculus. In Section 3, fractional-order Bernoulli, fractional-order
Legendre functions and their properties are defined. In Section 4, we present the
numerical scheme for solving the distributed-order fractional differential equations.
Error bound of our approximation is obtained in Section 5. In section 6, we present
and discuss some numerical examples. Finally, a conclusion is given in section 7.

2. Preliminaries

In this section, we recall some basic definitions and properties of fractional deriv-
ative and integral.

Definition 2.1. The Riemann-Liouville fractional integral of order ν is given as [35]
R
0 I

ν
t ζ(t) = 1

Γ(ν)

∫ t
0
(t− τ)ν−1ζ(τ)dτ, t > 0.

Definition 2.2. The Caputo fractional derivative of order ν is given as [35]
C
0 D

ν
t ζ(t) = 1

Γ(n−ν)

∫ t
0
(t− τ)n−ν−1ζ(n)(τ)dτ, n− 1 < ν ≤ n.

Proposition 2.3. The Caputo fractional derivative and Riemann-Liouville fractional
integral satisfies the following properties [35]:

(1) C
0 D

ν
t
R
0 I

ν
t ζ(t) = ζ(t),

(2) R
0 I

ν
t
C
0 D

ν
t ζ(t) = ζ(t)−

∑n−1
i=0 ζ

(i)(0) t
i

i! ,

(3) C
0 D

ν
t ζ(t) = 0RIn−νt

C
0 D

n
t ζ(t),

(4) C
0 D

ν
t (λζ1(t) + θζ2(t)) = λC0 D

ν
t ζ1(t) + θC0 D

ν
t ζ2(t),

(5) C
0 D

ν
t t
β =

{
0, ν ∈ N0, β < ν,

Γ(β+1)
Γ(β+1−ν) t

β−ν , otherwise,

(6) C
0 D

ν
t λ = 0,

where λ, θ are real constants and n− 1 < ν ≤ n.

3. Fractional-order functions

To solve DFPDEs, we use fractional-order Bernoulli-Legendre functions.

3.1. Fractional-order Bernoulli functions. The fractional-order Bernoulli func-
tions (FBFs) β

(h,γ)
m (x), on the interval [0, h] are defined as [33]

β(h,γ)
m (x) =

m∑
i=0

(
m
i

)
βγm−i
hiγ

xiγ , 0 ≤ x ≤ h, (3.1)
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where βγi := βγi (0) = βi, i = 0, 1, ...,m, are Bernoulli numbers. Therefore, the first
four FBFs are
β

(h,γ)
0 (x) = 1,

β
(h,γ)
1 (x) = (x/h)γ − 1

2 ,

β
(h,γ)
2 (x) = (x/h)2γ − (x/h)γ + 1

6 ,

β
(h,γ)
3 (x) = (x/h)3γ − 3

2 (x/h)2γ + 1
2 (x/h)γ .

FBFs satisfy the following properties [33]∫ h

0

β(h,γ)
n (x)β(h,γ)

m (x)xγ−1dx =
hγ

γ
(−1)n−1 m!n!

(m+ n)!
βγm+n, m, n ≥ 1.

(3.2)

∫ h

0

β
(h,γ)2

0 (x)xγ−1dx =
hγ

γ
. (3.3)

3.2. Fractional-order Legendre functions. The fractional-order Legendre func-

tions (FLFs) L
(h,γ)
m (t), on the interval [0, h] are defined as [33]

L
(h,γ)
m+1 (t) = (2m+1)(2(t/h)γ−1)

m+1 L
(h,γ)
m (t)− m

m+1L
(h,γ)
m−1(t), m = 1, 2, . . . ,

L
(h,γ)
0 (t) = 1, L

(h,γ)
1 (t) = 2(t/h)γ − 1.

The analytic form of L
(h,γ)
m (t) of degree mγ is defined by using

L(h,γ)
m (t) =

m∑
i=0

bi,m
hiγ

tiγ , m = 0, 1, 2, . . . , (3.4)

where bi,m = (−1)m+i(m+i)!
(m−i)!(i!)2 , and L

(h,γ)
m (0) = (−1)m, L

(h,γ)
m (h) = 1.

The FLFs are orthogonal with respect to the weight function ω(t) = tγ−1 on the
interval [0, h], then the orthogonality condition is [33]∫ h

0

L(h,γ)
n (t)L(h,γ)

m (t)tγ−1dt =
hγ

(2m+ 1)γ
δnm, m ≥ n, (3.5)

where δnm is the Kronecker function.

4. Description of the scheme

In this section, we use fractional integral operators of FBFs (<(h1,γ)(ν, x)) and
FLFs (Θ(h2,γ)(ν, t)) of order ν which were derived in [33] for solving the following
DFPDEs as:∫ 1

0

C(α)
∂αζ(x, t)

∂tα
dα =

∂2ζ(x, t)

∂x2
+ G(x, t, ζ(x, t)), 0 ≤ x ≤ h1, 0 ≤ t ≤ h2,

(4.1)

where the function C(α) is acting as weight for the order of differentiation such that
as
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C(α) ≥ 0,
∫ 1

0
C(α)dα = % > 0,

with initial condition

ζ(x, 0) = f(x), (4.2)

and boundary conditions

ζ(0, t) = g0(t), ζ(h1, t) = g1(t). (4.3)

For solving the above problem, we expand ∂3ζ(x,t)
∂x2∂t as:

∂3ζ(x, t)

∂x2∂t
= B(h1,γ)T (x)AL(h2,γ)(t), (4.4)

where A is an unknown matrix of dimensional M ×M ′ which should be obtained.
Also, we have

B(h1,γ)(x) = [β
(h1,γ)
0 (x), β

(h1,γ)
1 (x), . . . , β

(h1,γ)
M (x)]T , (4.5)

and

L(h2,γ)(t) = [L
(h2,γ)
0 (t), L

(h2,γ)
1 (t), . . . , L

(h2,γ)
M ′ (t)]T . (4.6)

Integrating from Eq. (4.4) of order 2 with respect to x yields

∂ζ(x, t)

∂t
= <(h1,γ)T (2, x)AL(h2,γ)(t)+

∂ζ(x, t)

∂t

∣∣∣∣
x=0

+x
∂

∂x
(
∂ζ(x, t)

∂t
)

∣∣∣∣
x=0

. (4.7)

Putting x = h1 in Eq. (4.7) and considering Eq. (4.3), we have

∂

∂x
(
∂ζ(x, t)

∂t
)

∣∣∣∣
x=0

=
1

h1

[
∂g1(t)

∂t
−<(h1,γ)T (2, h1)AL(h2,γ)(t)− ∂g0(t)

∂t

]
. (4.8)

Therefore, we get

∂ζ(x, t)

∂t
= <(h1,γ)T (2, x)AL(h2,γ)(t)− x

h1
(<(h1,γ)T (2, h1)AL(h2,γ)(t))

+ (1− x

h1
)
∂g0(t)

∂t
+

x

h1

∂g1(t)

∂t
. (4.9)

Integrating Eq. (4.4) with respect to t we have

∂2ζ(x, t)

∂x2
= B(h1,γ)T (x)AΘ(h2,γ)(1, t) +

∂2ζ(x, t)

∂x2

∣∣∣∣
t=0

= B(h1,γ)T (x)AΘ(h2,γ)(1, t) +
∂2f(x, t)

∂x2
. (4.10)

Now, by integrating Eq. (4.9), with respect to t, we obtain

ζ(x, t) = <(h1,γ)T (2, x)AΘ(h2,γ)(1, t)

− x

h1
(<(h1,γ)T (2, h1)AΘ(h2,γ)(1, t))

+ (1− x

h1
)(g0(t)− g0(0)) +

x

h1
(g1(t)− g1(0)) + f(x). (4.11)
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By differentiation of Eq. (4.11) of order α with respect to t, we have

∂αζ(x, t)

∂tα
= <(h1,γ)T (2, x)AΘ(h2,γ)(1− α, t)

− x

h1
(<(h1,γ)T (2, h1)AΘ(h2,γ)(1− α, t))

+ (1− x

h1
)C0 D

α
t g0(t) +

x

h1

C
0 D

α
t g1(t). (4.12)

Substituting Eqs. (4.10), (4.11) and (4.12) in Eq. (4.1), yields

∫ 1

0

C(α)

(
<(h1,γ)T (2, x)AΘ(h2,γ)(1− α, t)

− x

h1
(<(h1,γ)T (2, h1)AΘ(h2,γ)(1− α, t))

+ (1− x

h1
)C0 D

α
t g0(t) +

x

h1

C
0 D

α
t g1(t)

)
dα = B(h1,γ)T (x)AΘ(h2,γ)(1, t)

+
∂2f(x, t)

∂x2
+ G(x, t,<(h1,γ)T (2, x)AΘ(h2,γ)(1, t)

− x

h1
(<(h1,γ)T (2, h1)AΘ(h2,γ)(1, t))

+ (1− x

h1
)(g0(t)− g0(0)) +

x

h1
(g1(t)− g1(0)) + f(x)). (4.13)

By applying the Gauss-Legendre numerical integration, Eq. (4.13) transforms into
the following equation:

1

2

ñ∑
r=1

ωrC(
1 + ηr

2
)

(
<(h1,γ)T (2, x)AΘ(h2,γ)(1− 1 + ηr

2
, t)

− x

h1
(<(h1,γ)T (2, h1)AΘ(h2,γ)(1− 1 + ηr

2
, t))

+ (1− x

h1
)C0 D

1+ηr
2

t g0(t) +
x

h1

C
0 D

1+ηr
2

t g1(t)

)
= B(h1,γ)T (x)AΘ(h2,γ)(1, t)

+
∂2f(x, t)

∂x2
+ G(x, t,<(h1,γ)T (2, x)AΘ(h2,γ)(1, t)

− x

h1
(<(h1,γ)T (2, h1)AΘ(h2,γ)(1, t))

+ (1− x

h1
)(g0(t)− g0(0)) +

x

h1
(g1(t)− g1(0)) + f(x)), (4.14)

where ωr and ηr are weights and nods of Gauss-Legendre given in [3]. We collo-
cate Eq. (4.14) at zeros of the shifted Legendre polynomial LM+1(x) and LM ′+1(t);
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respectively, we get

1

2

ñ∑
r=1

ωrC(
1 + ηr

2
)

(
<(h1,γ)T (2, xi)AΘ(h2,γ)(1− 1 + ηr

2
, tj)

− xi
h1

(<(h1,γ)T (2, h1)AΘ(h2,γ)(1− 1 + ηr
2

, tj))

+ (1− xi
h1

)C0 D
1+ηr

2
t g0(tj) +

xi
h1

C
0 D

1+ηr
2

t g1(tj)

)
= B(h1,γ)T (xi)AΘ(h2,γ)(1, tj)

+
∂2f(xi, tj)

∂x2
+ G(xi, tj ,<(h1,γ)T (2, xi)AΘ(h2,γ)(1, tj)

− xi
h1

(<(h1,γ)T (2, h1)AΘ(h2,γ)(1, tj)) + (1− xi
h1

)(g0(tj)− g0(0))

+
xi
h1

(g1(tj)− g1(0)) + f(xi)), 0 ≤ i ≤M, 0 ≤ j ≤M ′. (4.15)

This creates a system of (M + 1)× (M ′ + 1) algebraic equations which can be solved
for the matrix A by applying Newton’s iterative scheme. By determining A, the un-
known function ζ(x, t) can be calculated via Eq. (4.11).
In the following algorithm, we express the necessary steps for implementing of pro-
posed scheme.

Algorithm
Input: M,M ′, γ.

Step 1: Define the FBFs β
(h,γ)
m (x) in Eq. (3.1) and

FLFs L
(h,γ)
m (t) in Eq. (3.4).

Step 2: Construct the FBFs and FLFs vectors B(h1,γ)(x),Θ(h2,γ)(t)
from Eqs. (4.5) and (4.6).
Step 3: Compute the Riemann-Liouville fractional integral operators for FBFs
and FLFs <(h1,γ)(ν, x) and Θ(h2,γ)(ν, t) from Ref. [33].
Step 4: Define the (M + 1)× (M ′ + 1) unknown matrix A.
Step 5: Construct the function in Eq. (4.14).
Step 6: Collocating Eq. (4.14) at zeros of the shifted Legendre polynomials
LM+1(x) and LM ′+1(t); respectively.
Step 7: Construct the system in Eq. (4.15).
Step 8: Solve the system of algebraic equations in step 7 by using
Newton’s iterative method.
Output: The approximate solution ζ(x, t) by using Eq. (4.11).

5. Error bound

The purpose of this section is to obtain an estimate of the error bound of the ap-
proximation of a smooth function u(x, t) ∈ ∆ = [0, h1] × [0, h2] by its expansion in
terms of the fractional-order Bernoulli-Legendre functions.
We assume that u(x, t) is a sufficiently smooth function on ∆ = [0, h1] × [0, h2]

and P
(γ)
M,M ′(x, t) is the interpolating function to u at points (xi, tj), where xi, i =
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0, 1, . . . ,M are the roots of the (M + 1)-degree shifted Chebyshev polynomial in
[0, h1] and tj , j = 0, 1, . . . ,M ′ are the roots of the (M ′ + 1)-degree shifted Chebyshev
polynomial in [0, h2], then we obtain [29, 34]

u(x, t)− P (γ)
M,M ′(x, t) =

C
0 D

(M+1)γ
x u(ξ, t)

Γ((M + 1)γ + 1)
ΠM
i=0(x− xi)γ

+
C
0 D

(M ′+1)γ
t u(x, η)

Γ((M ′ + 1)γ + 1)
ΠM ′

j=0(t− tj)γ (5.1)

+
C
0 D

(M+1)γ
x

C
0 D

(M ′+1)γ
t u(ξ′, η′)

Γ((M + 1)γ + 1)Γ((M ′ + 1)γ + 1)

ΠM
i=0(x− xi)γΠM ′

j=0(t− tj)γ ,
(5.2)

where ξ, ξ′ ∈ [0, h1] and η, η′ ∈ [0, h2]. Therefore

|u(x, t)− P (γ)
M,M ′(x, t)| ≤ max(x,t)∈∆|C0 D(M+1)γ

x u(ξ, t)| ΠM
i=0|x− xi|γ

Γ((M + 1)γ + 1)

+ max(x,t)∈∆|C0 D
(M ′+1)γ
t u(x, η)|

ΠM ′

j=0|t− tj |γ

Γ((M ′ + 1)γ + 1)

+ max(x,t)∈∆|C0 D(M+1)γ
x

C
0 D

(M ′+1)γ
t u(ξ′, η′)|

ΠM
i=0|x− xi|γΠM ′

j=0|t− tj |γ

Γ((M + 1)γ + 1)Γ((M ′ + 1)γ + 1)
.

(5.3)

We assume that there are real numbers %1, %2 and %3 such that

max(x,t)∈∆|C0 D
(M+1)γ
x u(ξ, t)| ≤ %1,

max(x,t)∈∆|C0 D
(M ′+1)γ
t u(x, η)| ≤ %2,

max(x,t)∈∆|C0 D
(M+1)γ
x

C
0 D

(M ′+1)γ
t u(ξ′, η′)| ≤ %3.

By using above relations and taking into account the estimates for Chebyshev inter-
polation nodes [19], we get

|u(x, t)− P (γ)
M,M ′(x, t)| ≤ %1

(h1/2)Mγ

Γ((M + 1)γ + 1)2Mγ

+ %2
(h2/2)M

′γ

Γ((M ′ + 1)γ + 1)2M ′γ

+ %3
(h1/2)Mγ(h2/2)M

′γ

Γ((M + 1)γ + 1)Γ((M ′ + 1)γ + 1)2(M+M ′)γ
.

(5.4)

Theorem 5.1. Let u∗(x, t) be the best approximation of the real sufficiently smooth
function u(x, t) ∈ ∆ by fractional-order Bernoulli-Legendre functions expansion, then,
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there exist real numbers %′1, %
′
2 and %′3 such that

‖u(x, t)− u∗(x, t)‖2 ≤ %′1
(h1/2)Mγ

Γ((M + 1)γ + 1)2Mγ

+ %′2
(h2/2)M

′γ

Γ((M ′ + 1)γ + 1)2M ′γ

+ %′3
(h1/2)Mγ(h2/2)M

′γ

Γ((M + 1)γ + 1)Γ((M ′ + 1)γ + 1)2(M+M ′)γ
.

(5.5)

Proof. By considering the definition of the best approximation and Eq. (5.4), we have

‖u(x, t)− u∗(x, t)‖22
≤ ‖u(x, t)− P (γ)

M,M ′(x, t)‖22

≤
∫ h2

0

∫ h1

0

|u(x, t)− P (γ)
M,M ′(x, t)|2dxdt

≤
∫ h2

0

∫ h1

0

%1
(h1/2)Mγ

Γ((M + 1)γ + 1)2Mγ
dxdt

+

∫ h2

0

∫ h1

0

%2
(h2/2)M

′γ

Γ((M ′ + 1)γ + 1)2M ′γ
dxdt

+

∫ h2

0

∫ h1

0

%3
(h1/2)Mγ(h2/2)M

′γ

Γ((M + 1)γ + 1)Γ((M ′ + 1)γ + 1)2(M+M ′)γ
dxdt.

= h1h2[%1
(h1/2)Mγ

Γ((M + 1)γ + 1)2Mγ
+ %2

(h2/2)M
′γ

Γ((M ′ + 1)γ + 1)2M ′γ

+ %3
(h1/2)Mγ(h2/2)M

′γ

Γ((M + 1)γ + 1)Γ((M ′ + 1)γ + 1)2(M+M ′)γ
]2. (5.6)

From (5.6) we conclude that (5.5) is valid, with

%′1 =
√
h1h2%1, %′2 =

√
h1h2%2, %′3 =

√
h1h2%3.

�

Now, we obtain the distance ‖u∗(x, t)− ū(x, t)‖2 between the best approximation
u∗(x, t) of the exact solution u(x, t) and our computed solution ū(x, t). For this
purpose, we need the following theorem.

Theorem 5.2. Suppose that

u∗(x, t) =
∑M
i=0

∑M ′

j=0 u
∗
ijβ

(h1,γ)
i (x)L

(h2,γ)
j (t) = B(h1,γ)T (x)U∗L(h2,γ)(t),

and

ū(x, t) =
∑M
i=0

∑M ′

j=0 ūijβ
(h1,γ)
i (x)L

(h2,γ)
j (t) = B(h1,γ)T (x)ŪL(h2,γ)(t),
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be two functions of space ∆. Then

‖u∗(x, t)− ū(x, t)‖2 ≤

√√√√M ′∑
j=0

hγ1h
γ
2

(2j + 1)γ2
+

M∑
i=1

M ′∑
j=0

(−1)i−1hγ1h
γ
2(i!)2βγ2i

(2j + 1)(2i)!γ2

‖U∗ − Ū‖2, (5.7)

where

U∗ = [u∗i,j ](M+1)×(M ′+1), Ū = [ūi,j ](M+1)×(M ′+1).

Proof. We have

‖u∗(x, t)− ū(x, t)‖2 =

(∫ h1

0

∫ h2

0

|u∗(x, t)− ū(x, t)|2xγ−1tγ−1dxdt

) 1
2

=

(∫ h1

0

∫ h2

0

|
M∑
i=0

M ′∑
j=0

(u∗i,j − ūi,j)β
h1γ
i (x)Lh2γ

j (t)|2xγ−1tγ−1dxdt

) 1
2

≤
∫ h1

0

∫ h2

0

[ M∑
i=0

M ′∑
j=0

|u∗i,j − ūi,j |2
][ M∑

i=0

M ′∑
j=0

|βh1γ
i (x)Lh2γ

j (t)|2
]
xγ−1tγ−1dxdt

) 1
2

=

( M∑
i=0

M ′∑
j=0

|u∗i,j − ūi,j |2
) 1

2
( M∑
i=0

M ′∑
j=0

∫ h1

0

∫ h2

0

|βh1γ
i (x)Lh2γ

j (t)|2xγ−1tγ−1dxdt

) 1
2

= ‖U∗ − Ū‖2
( M ′∑
j=0

hγ1h
γ
2

(2j + 1)γ2
+

M∑
i=1

M ′∑
j=0

(−1)i−1hγ1h
γ
2(i!)2βγ2i

(2j + 1)(2i)!γ2

) 1
2

. (5.8)

So, the proof of this theorem is completed. �

By attention to the above theorems, we find the distance ‖u(x, t)−ū(x, t)‖2 between
the exact solution u(x, t) and our numerical solution ū(x, t). For this aim, we present
the following theorem.

Theorem 5.3. Let ū(x, t) be our numerical approximation of space ∆. Then we have

‖u(x, t)− ū(x, t)‖2 ≤ %′1
(h1/2)Mγ

Γ((M + 1)γ + 1)2Mγ

+ %′2
(h2/2)M

′γ

Γ((M ′ + 1)γ + 1)2M ′γ

+ %′3
(h1/2)Mγ(h2/2)M

′γ

Γ((M + 1)γ + 1)Γ((M ′ + 1)γ + 1)2(M+M ′)γ

+

√√√√M ′∑
j=0

hγ1h
γ
2

(2j + 1)γ2
+

M∑
i=1

M ′∑
j=0

(−1)i−1hγ1h
γ
2(i!)2βγ2i

(2j + 1)(2i)!γ2

‖U∗ − Ū‖2.
(5.9)
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Proof. By using Theorems 5.1 and 5.2, we have

‖u(x, t)− ū(x, t)‖2 ≤ ‖u(x, t)− u∗(x, t)‖2 + ‖u∗(x, t)− ū(x, t)‖2

≤ %′1
(h1/2)Mγ

Γ((M + 1)γ + 1)2Mγ

+ %′2
(h2/2)M

′γ

Γ((M ′ + 1)γ + 1)2M ′γ

+ %′3
(h1/2)Mγ(h2/2)M

′γ

Γ((M + 1)γ + 1)Γ((M ′ + 1)γ + 1)2(M+M ′)γ

+

√√√√M ′∑
j=0

hγ1h
γ
2

(2j + 1)γ2
+

M∑
i=1

M ′∑
j=0

(−1)i−1hγ1h
γ
2(i!)2βγ2i

(2j + 1)(2i)!γ2

‖U∗ − Ū‖2.
(5.10)

�

6. Numerical results

We show the effectiveness of our scheme with four examples. The computations
associated with the examples were performed using Mathematica 10. Also, we report
the CPU time (seconds) in all examples, which have been obtained on a 2.67 GHz
Core i5 personal computer with 4 GB of RAM.
Example 1. Consider the distributed-order fractional partial differential equation as
[26]:

∫ 1

0

Γ(
7

2
− α)

∂αζ(x, t)

∂tα
dα =

∂2ζ(x, t)

∂x2
+ ζ2(x, t)

+
15
√
π(t− 1)t

3
2

8Lnt
x(x− 1)− 2t

5
2 − t5x2(x− 1)2, (6.1)

with the initial and boundary conditions

ζ(x, 0) = 0, ζ(0, t) = 0, ζ(1, t) = 0, (6.2)

where the analytical solution is ζ(x, t) = t
5
2x(x− 1).

In Table 1, we display the maximum absolute error using the fractional-order Bernoulli-
Legendre functions for γ = 1

2 with various values of M and M ′ together with the finite
difference method [26]. Also, Table 2 lists the absolute error of our scheme for various
values of γ.

Example 2. Consider the distributed-order fractional partial differential equation
as [7]

∫ 1

0

Γ(3− α)
∂αζ(x, t)

∂tα
dα =

∂2ζ(x, t)

∂x2
+ 2t2 +

2(t− 1)t(2− x)x

Lnt
, (6.3)
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Table 1. L∞ errors of the present method for γ = 1
2 , different

values of M , M ′ and Ref. [26] for Example 1.

Ref. [26] L∞errors CPU
∆t = 0.0625 3.22× 10−2 −
∆t = 0.015625 8.99× 10−3 −
∆t = 0.00390625 2.31× 10−3 −
∆t = 0.000976563 5.83× 10−4 −
Present method
M = M ′ = 2 8.28× 10−4 0.047
M = M ′ = 3 2.93× 10−15 0.219
M = M ′ = 4 1.94× 10−16 0.515

Table 2. Absolute error of the present method with M = M ′ = 4
for different values of γ for Example 1.

(x, t) γ = 1
4 γ = 1

3 γ = 1
2 γ = 2

3 γ = 1

(0.1, 0.1) 8.05× 10−6 1.46× 10−6 2.71× 10−18 9.58× 10−7 5.81× 10−6

(0.2, 0.2) 1.51× 10−5 2.55× 10−6 6.07× 10−18 1.79× 10−6 1.30× 10−5

(0.3, 0.3) 9.29× 10−6 1.43× 10−6 8.67× 10−18 1.15× 10−6 1.13× 10−5

(0.4, 0.4) 1.80× 10−5 2.99× 10−6 2.78× 10−17 2.78× 10−6 2.97× 10−5

(0.5, 0.5) 6.88× 10−6 1.12× 10−6 3.47× 10−17 1.07× 10−6 1.23× 10−5

(0.6, 0.6) 6.04× 10−6 1.18× 10−6 4.16× 10−17 1.54× 10−6 2.13× 10−5

(0.7, 0.7) 7.34× 10−6 1.41× 10−6 1.39× 10−17 1.91× 10−6 2.83× 10−5

(0.8, 0.8) 2.11× 10−7 1.43× 10−8 0 5.41× 10−9 4.24× 10−7

(0.9, 0.9) 3.07× 10−6 5.80× 10−7 1.94× 10−16 8.74× 10−7 1.53× 10−5

(1, 1) 0 1.11× 10−16 0 2.22× 10−16 0
CPU 0.985 0.953 0.516 0.843 0.407

with the initial and boundary conditions

ζ(x, 0) = 0, ζ(0, t) = 0, ζ(2, t) = 0, (6.4)

where the analytical solution is ζ(x, t) = t2x(2− x).
The L∞ errors of our scheme for γ = 1

2 and various values of M , M ′ and the finite
difference method [7] are reported in Table 3. So, the results demonstrate that our
scheme is more accurate. In addition, the absolute errors of the numerical solution
for M = M ′ = 4 and different values of γ are shown in Table 4. In Figs. 1 and 2,
we represent absolute errors of the present method with M = M ′ = 4, γ = 1

2 and the
finite difference method [7] at (x, 0.25) and (x, 0.75).
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Table 3. L∞ errors of the present method for γ = 1
2 , different

values of M , M ′ and Ref. [7] for Example 2.

Ref. [7] L∞errors CPU
∆t = 0.0625 2.39× 10−2 −
∆t = 0.015625 4.66× 10−3 −
∆t = 0.00390625 9.10× 10−4 −
∆t = 0.000976563 1.84× 10−4 −
Present method
M = M ′ = 2 1.91× 10−9 0.062
M = M ′ = 3 4.09× 10−14 0.109
M = M ′ = 4 4.44× 10−16 0.297

Table 4. Absolute error with M = M ′ = 4 for different values of γ
for Example 2.

(x, t) γ = 1
4 γ = 1

3 γ = 1
2 γ = 2

3 γ = 1

(0.1, 0.1) 3.34× 10−17 6.94× 10−18 1.02× 10−17 2.41× 10−6 8.89× 10−18

(0.2, 0.2) 7.98× 10−17 4.68× 10−17 5.20× 10−18 1.09× 10−5 2.26× 10−17

(0.3, 0.3) 1.18× 10−16 5.55× 10−17 4.86× 10−17 2.96× 10−6 5.55× 10−17

(0.4, 0.4) 1.25× 10−16 6.94× 10−17 4.16× 10−17 1.57× 10−5 2.78× 10−17

(0.5, 0.5) 2.50× 10−16 1.39× 10−16 1.39× 10−16 1.09× 10−5 8.33× 10−17

(0.6, 0.6) 5.00× 10−16 1.67× 10−16 2.78× 10−16 5.57× 10−6 1.11× 10−16

(0.7, 0.7) 1.05× 10−15 1.11× 10−16 2.78× 10−16 1.51× 10−5 1.67× 10−16

(0.8, 0.8) 3.33× 10−16 5.55× 10−16 2.22× 10−16 5.03× 10−6 2.22× 10−16

(0.9, 0.9) 3.33× 10−16 3.33× 10−16 1.11× 10−16 1.30× 10−5 2.22× 10−16

(1, 1) 5.55× 10−16 4.44× 10−16 4.44× 10−16 8.04× 10−6 1.11× 10−15

CPU 0.343 0.375 0.375 0.359 0.202

Example 3. Consider the distributed-order fractional partial differential equation
[27]∫ 1

0

Γ(
7

2
− α)

∂αζ(x, t)

∂tα
dα =

∂2ζ(x, t)

∂x2

+

t
3
2

(
15
√
π(t− 1)(x− 1)2x+ 16t(2− 3x)Lnt

)
8Lnt

,

(6.5)

with the initial and boundary conditions

ζ(x, 0) = 0, ζ(0, t) = 0, ζ(1, t) = 0, (6.6)

where the analytical solution is ζ(x, t) = t
5
2x(1− x)2.

In Table 5 we give the L∞ errors of our approach for different values of M and M ′ with
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Figure 1. Absolute errors of (a) : our scheme for M = M ′ = 4
and γ = 1

2 , (b) : Ref. [7] at (x, 0.25) for Example 2.

Figure 2. Absolute errors of (a) : our scheme for M = M ′ = 4
and γ = 1

2 , (b) : Ref. [7] at (x, 0.75) for Example 2.

Chebyshev collocation method [27]. In Table 6, we express the comparison between
the absolute error of exact and approximate solutions together with CPU time for
M = M ′ = 5 with different values of γ. Furthermore, the graphs of absolute errors of
our scheme and the Chebyshev collocation method [27] are illustrated in Figure 3.

Example 4. Consider the distributed-order fractional partial differential equation
[27]

∫ 1

0

Γ(
5

2
− α)

∂αζ(x, t)

∂tα
dα =

∂2ζ(x, t)

∂x2

+

√
t(x− 1)2(3

√
π(t− 1)(x− 1)2x2 − 8t(5x(3x− 2) + 1)Lnt)

4Lnt
, (6.7)
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Table 5. L∞ errors of the present method for γ = 1
2 , various values

of M,M ′ and Ref. [27] for Example 3.

Ref. [27] L∞errors CPU
n = m = 5 2.40× 10−5 −
n = m = 7 4.76× 10−6 −
n = m = 9 1.43× 10−6 −
n = m = 11 4.40× 10−7 −
Present method
M = M ′ = 2 5.77× 10−4 0.125
M = M ′ = 3 9.12× 10−16 0.219
M = M ′ = 4 2.22× 10−16 0.297
M = M ′ = 5 2.16× 10−16 0.735

Table 6. Absolute error with M = M ′ = 5 for various values of γ
for Example 3.

(x, t) γ = 1
4 γ = 1

3 γ = 1
2 γ = 2

3 γ = 1

(0.1, 0.1) 6.30× 10−7 6.86× 10−8 1.00× 10−17 3.70× 10−7 3.27× 10−6

(0.2, 0.2) 2.10× 10−7 1.45× 10−8 3.04× 10−18 4.43× 10−8 1.03× 10−6

(0.3, 0.3) 5.13× 10−7 5.08× 10−8 3.73× 10−17 4.10× 10−7 6.89× 10−6

(0.4, 0.4) 1.24× 10−7 9.41× 10−9 1.39× 10−17 1.69× 10−8 8.67× 10−7

(0.5, 0.5) 8.18× 10−8 1.38× 10−8 3.47× 10−18 4.31× 10−7 5.41× 10−6

(0.6, 0.6) 2.63× 10−8 6.12× 10−9 9.02× 10−17 3.41× 10−7 3.18× 10−6

(0.7, 0.7) 3.87× 10−8 3.09× 10−9 6.25× 10−17 5.01× 10−8 1.16× 10−6

(0.8, 0.8) 3.15× 10−8 2.97× 10−9 3.12× 10−17 1.42× 10−8 1.43× 10−6

(0.9, 0.9) 1.42× 10−8 1.32× 10−9 2.16× 10−16 1.45× 10−7 6.64× 10−7

(1, 1) 5.55× 10−17 5.55× 10−17 0 1.09× 10−16 1.11× 10−16

CPU 0.906 0.859 0.735 0.890 0.531

with the initial and boundary conditions

ζ(x, 0) = 0, ζ(0, t) = 0, ζ(1, t) = 0, (6.8)

where the analytical solution is ζ(x, t) = t
3
2x2(1− x)4.

Table 7 demonstrates a comparison between the numerical results given by our scheme
for γ = 1

2 and different values of M and M ′ and Ref. [27]. It is observed from
these results that our approach is more accurate than Ref. [27]. Table 8 shows the
comparison between the absolute error of exact and approximate solutions together
with CPU time for M = 8,M ′ = 3 with different values of γ. Also, the graph of
absolute errors of the present scheme for M = 8,M ′ = 3 and γ = 1

2 (left), and the
graph of absolute errors of Ref. [27] (right) are illustrated in Figure 4.
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Figure 3. Absolute errors of (a) : our scheme for M = M ′ = 5
and γ = 1

2 , (b) : Ref. [27] for Example 3.

Table 7. L∞ errors of the present method for γ = 1
2 , various values

of M , M ′ and Ref. [27] for Example 4.

Ref. [27] L∞errors CPU
n = m = 5 1.21× 10−3 −
n = m = 7 1.06× 10−5 −
n = m = 9 4.47× 10−6 −
n = m = 11 1.69× 10−6 −
Present method
M = 5,M ′ = 3 7.78× 10−5 0.328
M = 6,M ′ = 3 9.21× 10−6 0.532
M = 7,M ′ = 3 4.98× 10−7 0.796
M = 8,M ′ = 3 2.40× 10−15 1.157

Figure 4. Absolute errors of (a) : our scheme for M = 8,M ′ = 3
and γ = 1

2 , (b) : Ref. [27] for Example 4.
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Table 8. Absolute error with M = 8,M ′ = 3 for various values of
γ for Example 4.

(x, t) γ = 1
4 γ = 1

3 γ = 1
2 γ = 2

3 γ = 1

(0.1, 0.1) 2.07× 10−4 1.40× 10−7 1.98× 10−16 3.58× 10−7 2.33× 10−6

(0.2, 0.2) 1.47× 10−3 2.91× 10−7 5.99× 10−16 4.28× 10−6 2.92× 10−5

(0.3, 0.3) 3.55× 10−3 4.32× 10−7 1.02× 10−15 2.26× 10−6 1.78× 10−5

(0.4, 0.4) 5.25× 10−3 9.62× 10−8 1.37× 10−15 2.14× 10−6 1.84× 10−5

(0.5, 0.5) 5.52× 10−3 1.14× 10−7 1.62× 10−15 3.13× 10−6 2.90× 10−5

(0.6, 0.6) 4.28× 10−3 1.20× 10−7 1.78× 10−15 1.51× 10−6 1.43× 10−5

(0.7, 0.7) 2.32× 10−3 9.75× 10−8 2.10× 10−15 3.92× 10−7 3.27× 10−6

(0.8, 0.8) 7.33× 10−4 7.47× 10−8 1.51× 10−15 2.77× 10−7 2.49× 10−6

(0.9, 0.9) 6.92× 10−5 7.93× 10−8 2.40× 10−15 3.14× 10−9 4.52× 10−7

CPU 1.469 1.516 1.125 1.504 0.735

7. Conclusion

In this paper, a numerical scheme for computing approximate solution of distributed-
order fractional partial differential equations is described. Our method is based on
expanding the existing functions in terms of the fractional-order Bernoulli-Legendre
functions. We have obtained the error bound of the proposed approximation. Also, a
set of numerical examples has been presented. Our numerical findings are compared
with exact solutions and with previous schemes. The comparison of the obtained
results demonstrates that this scheme is very accurate.
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