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Abstract In this paper, we propose an efficient technique-based optimal homotopy analysis
method with Green’s function technique for the approximate solutions of nonlocal

elliptic boundary value problems. We first transform the nonlocal boundary value

problems into the equivalent integral equations. We then apply the optimal ho-
motopy analysis method for the approximate solution of the considered problems.

Several examples are considered to compare the results with the existing technique.

The numerical results confirm the reliability of the present method as it tackles such
nonlocal problems without any limiting assumptions. We also provide the conver-

gence and the error estimation of the proposed method.
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1. Introduction

The aim of this article is to use the homotopy analysis method with Green’s
function technique for obtaining the accurate numerical solutions for a class of one-
dimensional nonlocal elliptic boundary value problems. We first consider the following
class of linear nonlocal elliptic boundary value problems [2, 8] as −α

( 1∫
0

y(s)ds

)
y′′(x) = h(x), x ∈ (0, 1),

y(0) = a, y(1) = b, a, b ∈ [0,∞).

(1.1)

We also consider the following class of nonlinear nonlocal elliptic nonlinear bound-
ary value problems [3, 8, 20] as −α

( 1∫
0

y(s)ds

)
y′′(x) + y2n+1(x) = 0, x ∈ (0, 1),

y(0) = a, y(1) = b, a, b ∈ [0,∞), n ∈ 0 ∪Z+.

(1.2)
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Such nonlocal boundary value problems arise in modeling various fields such as the
aero-elastic behavior of suspended flexible cables subjected to icing conditions and
wind action [11, 12, 20]. For details on such physical applications of nonlocal boundary
value problems see [3, 8, 19] and the references therein.

In [2], the existence and uniqueness of solution of (1.1) was discussed by using
a fixed point theorem and then the numerical solutions were obtained via a finite
difference scheme. In [3], authors discussed a numerical method for (1.2), where
they found a priori estimates and the existence and uniqueness of the solution for
the nonlinear auxiliary problem. In [8], Khuri and Wazwaz applied the variational
iteration method for the approximate solutions of (1.1) and (1.2) and established
uniform convergence of the scheme. In [20], Themistoclakis and Vecchio provided the
sufficient conditions for the unique solution and a general convergence for (1.2) and
used the iterative techniques to tackle the nonlocal nonlinearity of the problem. In
[13], the authors presented the stability and numerical approximation for a spacial
class of semi-linear parabolic equations on the Lipschitz bounded regions. The least
square homotopy perturbation method for boundary value problems was studied in
[1]. In [14] authors used the multi-wavelets Galerkin method to solve delay differ-
ential equations with vanishing delay known as Pantograph equation. A numerical
technique based on the wavelet Galerkin method was applied for solving the nonlin-
ear Benjamin-Bona-Mahony equation in [15]. The semi-analytic methods such as the
homotopy perturbation method, the variational iteration method and the Adomian
decomposition method were applied to solve the Fitzhugh-Nagumo equation [5]. The
homotopy analysis method was applied to solve nonlinear fractional partial differential
equations [6, 7].

In this paper, our goal is to use the homotopy analysis method with Green’s
function technique for obtaining the accurate numerical solutions for a class of one-
dimensional nonlocal elliptic boundary value problems (1.1) and (1.2). Firstly, we
will transform the problems (1.1) and (1.2) into the equivalent integral equations. We
then apply the OHAM [16] to obtain the accurate numerical solutions.

2. Homotopy analysis method with Green’s function

2.1. Integral form of the problem. Consider a general nonlocal elliptic BVPs form
of (1.1) and (1.2) as{

α(p)y′′(x) = f(y(x)), x ∈ (0, 1),
y(0) = a, y(1) = b,

(2.1)

where p =

1∫
0

y(s)ds and α(p) is a continuous function. It should be noted that

the nonlocal elliptic BVPs (1.1) with f = −h(x) and (1.2) with f = y2n+1(x) are
particular cases of (2.1).
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Following Singh et al. [17, 18], the integral form of (2.1) is given by

y(x) = a+ (b− a)x+
1

α(p)

1∫
0

G(x, s)f(y(s))ds, (2.2)

where G(x, s) is

G(x, s) =

{
x(s− 1), x ≤ s,
s(x− 1), s ≤ x. (2.3)

2.2. Homotopy analysis method. In view of HAM [9, 10], the zero-order defor-
mation equation for (2.2) is constructed as

(1− q)[φ(x, q)− y0(x)] = q c0 T [φ(x, q)], q ∈ [0, 1], (2.4)

where q is an embedding parameter, y0(x) is an initial guess, c0 6= 0 is convergence
control parameter, φ(x, q) is an unknown function, and T [φ(x, q)] is given by

T [φ(x, q)] = φ(x, q)−
(
a+ (b− a)x

)
− 1

α(p[φ(x, q)])

1∫
0

G(x, s)f(φ(s, q))ds = 0. (2.5)

Substituting q = 0, the zero-order deformation equation (2.4) reduces to φ(x, 0) =
y0(x). If we substitute q = 1, equation (2.4) becomes T [φ(x, 1)] = 0. Therefore, we
have φ(x, 1) = y(x), where y(x) is desired solution of (2.2).

Expanding φ(x, q) by Taylor expansion with respect to q, we find

φ(x, q) = y0(x) +

∞∑
k=1

yk(x)qk, (2.6)

where yk(x) is given by

yk(x) =
1

k!

∂k

∂qk
[φ(x, q)]

∣∣∣∣
q=0

. (2.7)

The series (2.6) converges for q = 1 if c0 6= 0 is chosen properly and it reduces to

φ(x, 1) ≡ y(x) =

∞∑
k=0

yk(x), (2.8)

which would be one of the solutions of (2.2). For further analysis we define the vector
−→yk = {y0(x), y1(x), . . . , yk(x)}.

In order to determine the function yk, we differentiate (2.4) k-times with respect to
q. The result is then divided by k!, and we substitute q = 0, which gives the so-called
kth-order deformation equation as

yk(x)− χk yk−1(x) = c0 Rk(−→y k−1, x), (2.9)

where χk is defined as

χk =

{
0, k ≤ 1,
1, k > 1,

(2.10)
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and

Rk(
−→y k−1, x) =

1

(k − 1)!

[
∂k−1T [φ(x, q)]

∂qk−1

]
q=0

=
1

(k − 1)!

[
∂k−1

∂qk−1
T

( ∞∑
m=0

ym(x)qm
)]

q=0

= yk−1(x)− (1− χk)
(
a+ (b− a)x

)
− 1

α(pk−1)

1∫
0

G(x, s)Hk−1ds.

Thus we have

Rk(−→y k−1, x) = yk−1(x)− (1−χk)
(
a+(b−a)x

)
− 1

α(pk−1)

1∫
0

G(x, s)Hk−1ds, (2.11)

where pk and Hk are given by

pk =

1∫
0

( k∑
m=0

ym(x)qm
)
ds, (2.12)

Hk =
1

k!

∂k

∂qk

[
f

( k∑
m=0

ym(x)qm
)]

q=0

. (2.13)

Using equations (2.9)- (2.13), we find the mth-order deformation equation as

yk−χkyk−1 = c0

[
yk−1−(1−χk)

(
a+(b−a)x

)
− 1

α(pk−1)

1∫
0

G(x, s)Hk−1ds

]
. (2.14)

By taking an initial guess y0 = a + (b − a)x, the components yk are successively
obtained. Hence, the nth-order approximate solution of (2.2) is obtained as

φn(x, c0) =

n∑
k=0

yk(x, c0). (2.15)

To find the optimal value of c0, we minimize the following squared residual equation

En(c0) =

∫ 1

0

(
N [φn(ξ, c0)]

)2
dξ. (2.16)

But in some cases, to compute the exact squared residual error (2.16) is very com-
plicated for large n. To avoid this difficulty, we use the following discrete averaged
residual error

En(c0) ≈ 1

M

M∑
k=1

(
N [φn(ξk, c0)]

)2
, ξk = kh, k = 1, 2, ...M. (2.17)

Finally, we find the optimal value of c0 by solving

dEn

dc0
= 0.
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Remark 2.1. By setting c0 = −1, the scheme (2.14) reduces to the Adomian decom-
position method (ADM) with Green’s function [17, 18].

3. Convergence analysis

In this section, we establish the convergence of the proposed method. Let X =(
C[0, 1], ‖y‖

)
be a Banach space with norm defined as

‖y‖ = max
x∈[0,1]

|y(x)|, y ∈ X.

Theorem 3.1. If the solution components y0, y1, y2, . . . given in (2.15) satisfy the
condition ‖yk+1‖ ≤ δ‖yk‖, ∀ k ≥ k0. Then the series solution

∑∞
k=0 yk is convergent

whenever 0 < δ < 1.

Proof. Define the sequence {φn}∞n=0 as,

φ0 = y0, φ1 = y0 + y1, φ2 = y0 + y1 + y2, . . . , φn = y0 + y1 + y2 + · · ·+ yn.
(3.1)

We next show that {φn}∞n=0 is a Cauchy sequence in the Banach space X.
Consider

‖φn+1 − φn‖ = ‖yn+1‖ ≤ δ‖yn‖ ≤ δ2‖yn−1‖ ≤ . . . ≤ δn−k0+1‖yk0‖.
For n,m ∈ N, n ≥ m > k0, we get

‖φn − φm‖ = ‖(φn − φn−1) + · · ·+ (φm+1 − φm)‖ (3.2)

≤ ‖φn − φn−1‖+ · · ·+ ‖φm+1 − φm‖

≤ (δn−k0 + δn−k0−1 + · · ·+ δm−k0+1)‖yk0
‖

=
1− δn−m

1− δ
δm−k0+1‖yk0

‖.

Since 0 < δ < 1, and above inequality becomes limn,m→∞ ‖φn − φm‖ = 0. Therefore,
{φn}∞n=0 is a Cauchy sequence. �

Theorem 3.2. If
∑∞

k=0 yk → y and φm =
∑m

k=0 yk is an approximation to the
solution y(x), then the absolute truncated error is given by

|y − φm| ≤
δm−k0+1

1− δ
‖yk0‖. (3.3)

Proof. From (3.2), we see

‖φn − φm‖ ≤
1− δn−m

1− δ
δm−k0+1‖yk0

‖,

for n ≥ m. Now, as n→∞ then φn → y and δn−m → 0. So,

‖y − φm‖ ≤
δm−k0+1

1− δ
‖yk0
‖. (3.4)

�

Theorem 3.3. If
∑∞

k=0 yk → y then it must be a solution of equation (2.2).
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Proof. Since the series
∑∞

k=0 yk is convergent, then

lim
n→∞

yn = 0, ∀ x ∈ [0, 1]. (3.5)

By summing up the left hand-side of (2.9), we get

n∑
k=1

(yk − χkyk−1) = y1 + . . .+ (yn − yn−1) = yn. (3.6)

Letting n→∞ and using (3.5), equation (3.6) reduces to

∞∑
k=1

(yk − χk yk−1) = 0. (3.7)

Using (3.7) and right hand-side of the relation (2.9), we obtain

∞∑
k=1

c0 Rk(−→y k−1, x) =

∞∑
k=1

(yk − χk yk−1) = 0. (3.8)

Since c0 6= 0, then equation (3.8) reduces to

∞∑
k=1

Rk(−→y k−1, x) = 0. (3.9)

Using (3.9) and (2.9), we have

0 =

∞∑
k=1

Rk(−→y k−1, x)

=

∞∑
k=1

(
yk−1 − (1− χk)

(
a+ (b− a)x

)
− 1

α(pk−1)

1∫
0

G(x, s)Hk−1ds

)

=

∞∑
k=1

yk−1 −
(
a+ (b− a)x

)
− 1
∞∑
k=1

α(pk−1)

1∫
0

G(x, s)

∞∑
k=1

Hk−1ds.

Since
∑∞

k=0 yk → y, then
∑∞

k=0Hk → f(y) and
∑∞

k=1 α(pk−1)→ α(p) [4], we obtain

y = a+ (b− a)x+
1

α(p)

1∫
0

G(x, s)f(y(s))ds.

Hence, y is the exact solution of (2.2). �

4. Numerical results

In this section, we consider four examples to the compare numerical results with
the existing exact solutions. For this purpose, we define the absolute errors as

En(x) = |y(x)− φn(x)|, en(x) = |y(x)− ψn(x)|,
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where φn(x) and ψn(x) are the homotopy analysis and Adomian decomposition solu-
tions, respectively.

Example 4.1. Consider the special linear case of the problem (1.1) with α(p) = p1/3

as 
p1/3y′′(x) =

6
3
√

4
x, x ∈ (0, 1)

y(0) = 0, y(1) = 1, p =

(
1∫
0

y(s)ds

)
.

(4.1)

The analytical solution is y(x) = x3.

Applying the OHAM (2.14) to the problem (4.1), we have

yk − χkyk−1 = c0

(
yk−1 − (1− χk)y0 −

1

α(pk−1)

1∫
0

G(x, s)
6s
3
√

4
ds

)
. (4.2)

Using (4.2) with an initial approximation y0 = x, we obtain φ2(x, c0). With the help
of (2.17), the optimal value of the parameter c0 is computed as c0 = −0.505595.
Hence the OHAM solution is given by

φ2(x) = 7.7× 10−16x+ x3. (4.3)

A comparison among the numerical results obtained by the OHAM solution φ2(x),
the ADM solution ψ2(x) and the exact solution y(x) is depicted in Table 1 and Figure
1. Also, the absolute errors are plotted in Figure 4.

Table 1. Numerical results of Example 4.1

x y ψ2(x) φ2(x) |y − ψ2| |y − φ2|
0.0 0.000 0.0000000000 0.000 0.000000000 0.00000000
0.1 0.001 -0.062559671 0.001 0.063559671 7.67615E-17
0.2 0.008 -0.115267240 0.008 0.123267240 1.49186E-16
0.3 0.027 -0.148270607 0.027 0.175270607 2.11636E-16
0.4 0.064 -0.151717670 0.064 0.215717670 2.49800E-16
0.5 0.125 -0.115756328 0.125 0.240756328 2.77556E-16
0.6 0.216 -0.030534480 0.216 0.246534480 3.05311E-16
0.7 0.343 0.1137999760 0.343 0.229200024 2.77556E-16
0.8 0.512 0.3270991400 0.512 0.184900860 2.22045E-16
0.9 0.729 0.6192151140 0.729 0.109784886 1.11022E-16
1.0 1.000 1.0000000000 1.000 2.22045E-16 0.000000000

Example 4.2. Consider the special nonlinear case of the problem (1.2) with α(p) = 1
p

as 
−1

p
y′′(x) +

3

4(2
√

2− 2)
y5(x) = 0, x ∈ (0, 1),

y(0) = 1, y(1) =
√
2
2 , p =

(
1∫
0

y(s)ds

)
.

(4.4)
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Figure 1. Comparison of the numerical solutions
of Example 4.1
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Figure 2. Comparison of the numerical absolute
error of Example 4.1

The analytical solution is y(x) = 1√
1+x

.

Applying the OHAM (2.14) to the problem (4.2), we have

yk − χkyk−1 = c0

(
yk−1 − (1− χk)y0 −

1

α(pk−1)

1∫
0

G(x, s)Hk−1ds

)
. (4.5)

Using (4.5) with an initial guess y0 = 1 + (
√
2
2 − 1)x and (2.17) with c0 = −0.819014,

we obtain the homotopy optimal solution as

φ2(x) = 1− 0.4973x+ 0.3737x2 − 0.3060x3 + 0.2235x4 − 0.1258x5 + 0.05148x6

− 0.0153x7 + 0.0033x8 − 0.00055x9 + 0.0000646x10 + · · ·



730 R. SINGH

A comparison among the numerical solution obtained by the OHAM solution φ2(x),
the ADM solution ψ2(x) and the exact solution is depicted in Table 2 and Figure 3.
Also, the absolute errors are plotted in Figure 4.

Table 2. Numerical results of Example 4.2

x y ψ2 φ2 |y − ψ2| |y − φ2|
0.0 1.000000000 1.000000000 1.000000000 0.000000000 0.000000000
0.1 0.953462589 0.954516555 0.953715758 0.001053966 0.000253169
0.2 0.912870929 0.914909713 0.913348055 0.002038784 0.000477126
0.3 0.877058019 0.879819116 0.877702187 0.002761097 0.000644168
0.4 0.845154255 0.848286083 0.845886767 0.003131828 0.000732512
0.5 0.816496581 0.819638873 0.817233417 0.003142293 0.000736836
0.6 0.790569415 0.793406404 0.791235825 0.002836989 0.000666410
0.7 0.766964989 0.769254375 0.767504100 0.002289386 0.000539111
0.8 0.745355992 0.746938889 0.745731089 0.001582896 0.000375097
0.9 0.725476250 0.726273545 0.725667948 0.000797295 0.000191698
1.0 0.707106781 0.707106781 0.707106781 0.000000000 2.22045E-16
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x
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0.80

0.85

0.90

0.95

1.00

y

Φ2HxL

Ψ2HxL
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Figure 3. Comparison of the numerical solutions
of Example 4.2

Example 4.3. Consider the special nonlinear case of the problem (1.2) with α(p) = p
as 

−p y′′(x) +
3(2
√

2− 2)

4
y5(x) = 0, x ∈ (0, 1)

y(0) = 1, y(1) =
√
2
2 , p =

(
1∫
0

y(s)ds

)
.

(4.6)

The analytical solution is y(x) = 1√
1+x

.
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Figure 4. Comparison of the numerical absolute
error of Example 4.2

Applying the OHAM (2.14) with y0 = 1 + (
√
2
2 − 1)x, we have

yk(x)−χkyk−1(x) = c0

(
yk−1(x)−(1−χk)y0(x)− 1

α(pk−1)

1∫
0

G(x, s)Hk−1ds

)
. (4.7)

Using (4.7) and (2.17) with c0 = −0.933697, we obtain the homotopy optimal solution
as

φ2(x) = 1− 0.495211x+ 0.362361x2 − 0.280911x3 + 0.195035x4

− 0.107115x5 + 0.043453x6 − 0.01294x7 + 0.002854x8

− 0.000464x9 + 0.000054x10 − · · ·
A comparison among the numerical solution obtained by the OHAM solution φ2(x),
the ADM ψ2(x) and the exact solution is depicted in Table 3 and Figure 5. Also, the
absolute errors are plotted in Figure 6.
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Figure 5. Comparison of the numerical solutions
of Example 4.3
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Table 3. Numerical results of Example 4.3

x y ψ2 φ2 |y − ψ2| |y − φ2|
0.0 1.000000000 1.000000000 1.000000000 0.000000000 0.000000000
0.1 0.953462589 0.954139200 0.953840089 0.000676611 0.000377500
0.2 0.912870929 0.914044009 0.913485384 0.001173080 0.000614454
0.3 0.877058019 0.878552757 0.877813154 0.001494738 0.000755135
0.4 0.845154255 0.846797874 0.845969674 0.001643619 0.000815419
0.5 0.816496581 0.818128147 0.817301384 0.001631566 0.000804803
0.6 0.790569415 0.792049712 0.791302438 0.001480297 0.000733023
0.7 0.766964989 0.768181846 0.767575192 0.001216857 0.000610203
0.8 0.745355992 0.746224331 0.745800843 0.000868338 0.000444851
0.9 0.725476250 0.725933776 0.725717917 0.000457526 0.000241667
1.0 0.707106781 0.707106781 0.707106781 0.000000000 2.22045E-16

0.2 0.4 0.6 0.8 1.0

x

0.0005

0.0010

0.0015

Error

E2HxL

e2HxL

Figure 6. Comparison of the numerical absolute
error of Example 4.3

Example 4.4. Consider the special case of the problem (1.2) with α(p) =
(
1
p

)2
as

−
(

1

p

)2

y′′(x) +
2

(ln 2)2
y3(x) = 0, x ∈ (0, 1),

y(0) = 1, y(1) = 1
2 , p =

(
1∫
0

y(s)ds

)
.

(4.8)

The analytical solution is y(x) = 1
1+x .

Applying the OHAM (2.14) with y0 = 1 + ( 1
2 − 1)x, we have

yk(x)−χkyk−1(x) = c0

(
yk−1(x)−(1−χk)y0(x)− 1

α(pk−1)

1∫
0

G(x, s)Hk−1ds

)
. (4.9)
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Using (4.9) and (2.17) with c0 = −0.612671, we obtain the homotopy optimal solution
as

φ2(x) = 1− 1.00399x+ 0.995127x2 − 0.90086x3 + 0.655261x4

− 0.338986x5 + 0.115228x6 − 0.0246916x7 + 0.00308645x8

− 0.00017147x9 + · · ·
A comparison among the numerical solution obtained by the OHAM solution φ2(x),
the ADM solution ψ2(x) and the exact solution is depicted in Table 4 and Figure 7.
Also, the absolute errors are plotted in Figure 8.

Table 4. Numerical results of Example 4.4

x y ψ2 φ2 |y(x)− ψ2| |y − φ2|
0.0 1.000000000 1.000000000 1.000000000 0.000000000 0.000000000
0.1 0.909090909 0.914550054 0.908713383 0.005459145 0.000377526
0.2 0.833333333 0.844849352 0.832746652 0.011516019 0.000586682
0.3 0.769230769 0.785573674 0.768603045 0.016342905 0.000627724
0.4 0.714285714 0.733317575 0.713705107 0.019031861 0.000580607
0.5 0.666666667 0.686029523 0.666157571 0.019362857 0.000509096
0.6 0.625000000 0.642573190 0.624561470 0.017573190 0.000438530
0.7 0.588235294 0.602393994 0.587870965 0.014158699 0.000364329
0.8 0.555555556 0.565272431 0.555285414 0.009716875 0.000270141
0.9 0.526315789 0.531148042 0.526170109 0.004832252 0.000145681
1.0 0.500000000 0.500000000 0.500000000 6.66134E-16 1.66533E-16
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Figure 7. Comparison of the numerical solutions
of Example 4.4

5. Conclusion

In this work, we have presented the optimal homotopy analysis method for solving
a class of nonlocal linear and non-linear BVPs. The nonlocal BVPs were transformed
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Figure 8. Comparison of the numerical absolute
error of Example 4.4

into the equivalent integral equations. Then the OHAM was applied to obtain the
approximate solutions of the problems. Unlike the ADM, the OHAM always provides
better approximate series solution as shown in Tables. We have also discussed the
convergence and error analysis of the proposed method.
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