تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,021 |
تعداد مشاهده مقاله | 52,491,553 |
تعداد دریافت فایل اصل مقاله | 15,218,393 |
Bounds of Riemann-Liouville fractional integral operators | ||
Computational Methods for Differential Equations | ||
مقاله 20، دوره 9، شماره 2، تیر 2021، صفحه 637-648 اصل مقاله (127.88 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2020.32653.1516 | ||
نویسنده | ||
Ghulam Farid* | ||
Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan. | ||
چکیده | ||
Fractional integral operators play an important role in generalizations and extensions of various subjects of sciences and engineering. This research is the study of bounds of Riemann-Liouville fractional integrals via (h − m)-convex functions. The author succeeded to find upper bounds of the sum of left and right fractional integrals for (h − m)-convex function as well as for functions which are deducible from aforementioned function (as comprise in Remark 1.2). By using (h − m) convexity of |f ′ | a modulus inequality is established for bounds of Riemann-Liouville fractional integrals. Moreover, a Hadamard type inequality is obtained by imposing an additional condition. Several special cases of the results of this research are identified. | ||
کلیدواژهها | ||
Convex function؛ (h − m)-convex function؛ Riemann-Liouville fractional integral operators؛ Bounds | ||
آمار تعداد مشاهده مقاله: 550 تعداد دریافت فایل اصل مقاله: 461 |