تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,852 |
تعداد دریافت فایل اصل مقاله | 15,213,898 |
برنامهریزی تأخیر برای بهبود میرایی نوسان توان در حضور تأخیرهای تصادفی | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 1، دوره 50، شماره 1 - شماره پیاپی 91، خرداد 1399، صفحه 1-8 اصل مقاله (1.53 M) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
رسول اصغری1؛ بابک مظفری* 1؛ تورج امرایی2 | ||
1دانشکده مهندسی برق و کامپیوتر - دانشگاه آزاد - واحد علوم و تحقیقات تهران | ||
2دانشکده مهندسی برق و کامپیوتر - دانشگاه خواجه نصیر طوسی | ||
چکیده | ||
کارایی محرکها در یک سیستم تأخیر زمانی ممکن است به دلیل تحلیل پایداری محافظهکارانه محدود شود؛ یا اینکه نتایج بهدستآمده از روشهای بهینهسازی که در پایدارسازی سیستم کنترلی مورد استفاده قرار میگیرند نسبت به وجود تاخیرهای تصادفی غیر قابل اطمینان شود. زمانیکه در حلقه فیدبک یک سیستم کنترل میرایی نوسان توان، (POD)، برای دریافت سیگنالهای راه دور از شبکههای مخابراتی استفاده شود، طبیعتاً یک سیستم کنترل میرایی نوسان توان همراه با تأخیرهای تصادفی (POD-RD) شکل میگیرد. در این مقاله، یک روش جدید طراحی برای بهبود عملکرد سیستم کنترل POD-RD برمبنای روش برنامهریزی تأخیردار سیگنال کنترلی پیشنهاد شده است. این روش در دو گام پیادهسازی میشود. در گام اول با بهینهسازی حریم طیفی و با فرض مقدار میانگین برای تأخیرهای مخابراتی، مقدار اولیه تأخیر اعمالی به سیگنال کنترلی و نیز مقدار اولیه پارامترهای کنترلکننده تعیین میشوند. در گام بعد برای درنظرگرفتن اثر تصادفی تاخیرهای مخابراتی، در یک روند تکراری مقدار بهینه تاخیر در سیگنال کنترلی و نیز پارامترهای بهینه کنترلکننده تعیین میشوند. در این بهینهسازی هدف حداقل کردن مقدار حریم طیفی و گشتاور مرتبه دوم حول آن تعریف شده است. امکانسنجی روش پیشنهادی با شبیهسازی و آزمایش بر روی سیستم آزمون چهار ماشینه ارزیابی شده است. نتایج حاکی از آن است که روش مذکور میتواند عملکرد مقاومی را در سیستم قدرت مورد مطالعه بوجود آورد. | ||
کلیدواژهها | ||
برنامهریزی تأخیر؛ میراساز نوسان توان؛ تأخیرهای تصادفی؛ حریم طیفی | ||
مراجع | ||
[1] مهدی، کراری، دینامیک و کنترل سیستمهای قدرت، چاپ اول، ویرایش اول، پلیتکنیک تهران، مرکز نشر دانشگاه صنعتی امیر کبیر، 1382. [2] E. V. Larsen, J. J. Sanchez-Gasca, and J. H. Chow, “Concepts for design of FACTS controllers to damp power swings,” IEEE Trans. Power Syst., vol. 10, no. 2, pp. 948–956, May 1995. [3] داود فاتح، علی اکبر مطیع بیرجندی، رضا ابراهیمپور، « افزایش میرایی نوسانات سیستم قدرت با جایابی UPFC بر اساس ضریب مانده و مدهای بحرانی»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 3، بهار 1393. [4] X. Xie, J. Xiao, C. Lu, and Y. Han, “Wide-area stability control for damping interarea oscillations of interconnected power systems,” IET Gen. Transm. Distrib. vol. 153, no. 5, pp. 507–514, Sep. 2006. [5] Y. Ge, Q. G. Chen, M. Jiang, Y. Q. Huang. "Modeling of random delays in networked control systems," Journal of Control Science and Engineering, vol. 2013, Article ID 383415, 2013. [6] L. X. Zhang, H. J. Gao, and O. Kaynak, “Network-induced constraints in networked control systems—a survey,” IEEE Trans. on Indus. Infor., vol. 9, no. 1, pp. 403–416, 2013. [7] W. Michiels and N. S. lulian, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, Philadelphia: SIAM, 2007. [8] K. Zhu, M. Chenine, L. Nordstrom, S. Holmstrom, and G. Ericsson, "Design Requirements of Wide-Area Damping Systems Using Empirical Data From a Utility IP Network," IEEE Trans. on Smart Grid, vol.5, pp. 829-838, 2014. [9] M. Mokhtari, F. Aminifar, D. Nazarpour, and S. Golshannavaz, “Wide area power oscillation damping with a fuzzy controller compensating the continuous communication delays,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1997–2005, May 2013. [10] W. Yao, L. Jiang, Q. Wu, J. Wen, and S. Cheng, “Delay-dependent stability analysis of the power system with a wide-area damping controller embedded,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 233–240, Feb. 2011. [11] Y. Wei, L. Jiang, W. Jinyu, Q. H. Wu, and C. Shijie, “Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 318–329, Jan. 2014. [12] Y. Li, Y. Zhou, F. Liu, Y. Cao, and C. Rehtanz, "Design and Implementation of Delay-Dependent Wide-Area Damping Control for Stability Enhancement of Power Systems," IEEE Trans. on Smart Grid, Vol. 8, no.4 , July 2017. [13] J. Li, Z. Chen, D. Cai, W. Zhen and Q. Huang, ”Delay-Dependent Stability Control for Power System With Multiple Time-Delays,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2316–2326, May. 2016. [14] R. Sipahi, S. I. Niculescu, C.T. Abdallah, W. Michiels and K. Gu, “Stability and stabilization of systems with time-delay limitations and opportunities”, IEEE Ctrl. Syst. Mag, vol. 31 no. 1, pp. 38–65, 2011. [15] R. Preece, A. M. Almutairi, O. Marjanovic and J. V. Milanovic, "Damping of inter-area oscillations using WAMS based supplementary controller installed at VSC based HVDC line," IEEE Trond. Power Tech., pp. 1-8, 2011. [16] B. Yang and Y. Sun, “Damping Factor Based Delay Margin for Wide Area Signals in Power System Damping Control,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3501–3502, Aug. 2013. [17] B. Yang, and Y. Sun, “IEEE A Novel Approach to Calculate Damping Factor Based Delay Margin for Wide Area Damping Control,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3116–3117, Nov. 2014. [18] B. Yang and Y. Z. Sun, "A new wide area damping controller design method considering signal transmission delay to damp inter area oscillations in power system," springer, Vol. 21, no. 11, pp. 4193–4198, Nov. 2014. [19] سعید اباذری، مجتبی برخورداری، عباس عرب دردری، «طراحی کنترلکننده مقاوم SVC مبتنی بر WAMS با در نظر گرفتن نامعینی تاخیر زمانی سیگنالهای راه دور»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، زمستان 1394. [20] K. Hirai and Y. Satoh, “Stability of a system with variable time delay,” IEEE Trans. Auto. Ctrl, vol. AC-25, no. 3, pp. 552–554, 1980. [21] S. Zhang and V. Vittal, “Design of wide-area power system damping controllers resilient to communication failures,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4292–4300, Nov. 2013 [22] M. J. Alden and X. Wang, "Robust H∞ control of time delayed power systems," Systems Science and Control Engineering, Vol. 3, no.1, pp. 253–261, 2015. [23] B. P. Padhy, S. C. Srivastava, and N. K. Verma "A Wide-Area Damping Controller considering Network Input & Output Delays and Packet Drop," IEEE Trans. Power Syst., Vol. 32, no. 1, pp. 166 – 176, Jan. 2017. [24] N. T. Anh, L. Vanfretti, J. Driesen, and D. V. Hertem," A Quantitative Method to Determine ICT Delay Requirements for Wide-Area Power System Damping Controllers," IEEE Trans. Power Syst., Vol. 30, no. 4, pp. 2023 – 2030, July 2015. [25] M. Bhadu, N. Senroy, I. N. Kar, and G. N. Sudha, "Robust linear quadratic Gaussian-based discrete mode wide area power system damping controller," IET Gen., Trans., Dist., Vol. 10, no.6 , April 2016. [26] C. Lu, X. Zhang, X. Wang, and Y. Han, “Mathematical expectation modeling of wide-area controlled power systems with stochastic time delay,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1511–1519, May 2015. [27] X. Zhang, C. Lu, X. Xie, and Z. Y. Dong, "Stability Analysis and Controller Design of a Wide-Area Time-Delay System Based on the Expectation Model Method," IEEE Trans. on Smart grid, Vol. 7, no. 1, pp. 520-529, JAN. 2016. [28] W. Michiels, “Spectrum-based stability analysis and stabilization of systems described by delay differential algebraic equations,” IET Ctrl Theo. App., vol.5, no.16, pp. 572 – 575, Nov. 2011. [29] Overton, M. L. in Spectral Analysis, Stability and Bifurcations 351–375 (Wiley-Blackwell, 2014). [30] D. Breda, and R. Vermiglio, “Stability of Linear Delay Differential Equations a Numerical Approach with MATLAB,’’ New York Heidelberg Dordrecht London: Springer, 2015. [31] P. Kundur, N. Balu, and M. Lauby, Power System Stability and Control, New York, NY, USA: McGraw-Hill Education, 1994. | ||
آمار تعداد مشاهده مقاله: 419 تعداد دریافت فایل اصل مقاله: 399 |