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Abstract In this paper, we study the existence of a nontrival weak solution for a class of Kirch-
hoff type problems with singular potentials and critical exponents. The proofs are

essentially based on an appropriated truncated argument, Caffarelli-Kohn-Nirenberg
inequalities, combined with a variant of the concentration compactness principle. We
also get a priori estimates of the obtained solution.
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1. Introduction

In this paper, we are interested in the existence of solutions for a class of Kirchhoff
type problems of the form

−M
(∫

Ω
|x|−ap|∇u|p dx

)
div
(
|x|−ap|∇u|p−2∇u

)
= λ|x|−bpf(x, u) + |x|−cp∗

a,c |u|p
∗
a,c−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN is a smooth bounded domain, 0 ∈ Ω, 0 ≤ a < N−p
p , 1 < p < N ,

a ≤ b, c < a + 1, p∗a,c = Np
N−(1+a−c)p , f ∈ C(Ω × R,R), λ is a positive parameter,

M ∈ C(R+
0 ,R

+
0 ) is increasing and satisfies the following condition:

(M0) There exists m0 > 0 such that

M(t) ≥ m0, ∀t ∈ R+
0 := [0,+∞).

It should be noticed that if a = b = 0 and c = 0 then problem (1.1) becomes the
p-Kirchhoff type problem with critical growth{

−M
(∫

Ω
|∇u|p dx

)
∆pu = λf(x, u) + |u|p∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)

where p∗ = Np
N−p is the critical Sobolev exponent.

Received: 14 April 2019 ; Accepted: 16 May 2020.
∗ Corresponding author.

589



590 N.T. CHUNG

Since the first equation in (1.2) contains an integral over Ω, it is no longer a
pointwise identity; therefore it is often called a nonlocal problem. This problem
models several physical and biological systems, where u describes a process which
depends on the average of itself, such as the population density, see [10]. Problem
(1.2) is related to the stationary version of the Kirchhoff equation which is presented
by Kirchhoff in 1883, see [18] for details.

In recent years, Kirchhoff type equations have been studied in many papers, we
refer to some interesting papers [1, 4, 8, 9, 15, 17, 23, 25], in which the authors have
used different methods to get the existence of solutions for the problems with sub-
critical growth. Because of the presence of the critical exponent p∗, problem (1.2)
creats many difficulties in applying variational methods. These come from the fact
that the embedding W 1,p

0 (Ω) ↪→ Lp∗
(Ω) is not compact and thus the Palais-Smale

condition fails, we refer to [2, 12, 16, 22, 26]. In recent papers [6, 11, 13, 14] the
authors have considered a class of Kirchhoff type problems with singular potentials
involving Caffarelli - Kohn - Nirenberg inequalities [27]. There, some existence and
multiplicity results for the appropriated problems have been obtained by using vari-
ational methods in the subcritical case. In this paper, we will study the existence
of nontrival solutions for problem (1.1) with singular potential and critical growth.
By condition (M0), the Kirchhoff function M(t) may be unbounded. This causes
some mathematical difficulties which make the study of such problems (1.1) and (1.2)
particularly interesting. For this reason, we need a truncation on M(t) as in (2.1).
In order to overcome the lack of compactness, we use the weighted version of the
Concentration Compactness Principle due to Xuan [28]. Applying the mountain pass
theorem [3], we show that problem (1.1) has at least one nontrival weak solution uλ,
provided the parameter λ is large enough. Moreover, we prove that the norm of the
obtained solution uλ tends to zero when λ → +∞.

We start by recalling some useful results in [5, 7, 27]. We have known that for all
u ∈ C∞

0 (RN ), there exists a constant Ca,c > 0 such that(∫
RN

|x|−cp∗
a,c |u|p

∗
a,c dx

) p
p∗a,c

≤ Ca,c

∫
RN

|x|−ap|∇u|p dx, (1.3)

where

−∞ < a <
N − p

p
, a ≤ c ≤ a+ 1, p∗a,c =

Np

N − (1 + a− c)p
.

Let W 1,p
0 (Ω, |x|−ap) be the completion of C∞

0 (Ω) with respect to the norm

∥u∥a,p =

(∫
Ω

|x|−ap|∇u|p dx
) 1

p

.

Then W 1,p
0 (Ω, |x|−ap) is a reflexive and separable Banach space. From the bounded-

ness of Ω and the standard approximation argument, it is easy to see that (1.3) holds

for any u ∈ W 1,p
0 (Ω, |x|−ap) in the sense that(∫

Ω

|x|−α|u|l dx
) p

l

≤ Ca,c

∫
Ω

|x|−ap|∇u|p dx, (1.4)
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for 1 ≤ l ≤ p∗ = Np
N−p , α ≤ (1+a)l+N

(
1− l

p

)
, that is, the embeddingW 1,p

0 (Ω, |x|−ap)

↪→ Ll(Ω, |x|−α) is continuous, where Ll(Ω, |x|−α) is the weighted Ll(Ω) space with
the norm

|u|l,α := |u|Ll(Ω,|x|−α) =

(∫
Ω

|x|−α|u|l dx
) 1

l

.

The best constant of the embedding W 1,p
0 (Ω, |x|−ap) ↪→ Ll(Ω, |x|−α) will be de-

noted by Sa,c, which is characterized by (see [7, 19])

Sa,c = inf
u∈X\{0}

∫
Ω
|x|−ap|∇u|p dx(∫

Ω
|x|−cp∗

a,c |u|p∗
a,c dx

) p
p∗a,c

> 0. (1.5)

In fact, we have the following compact embedding result which is an extension of
the classical Rellich-Kondrachov compactness theorem.

Lemma 1.1 (see [27], Compactness embedding theorem). Suppose that Ω ⊂ RN

is an open bounded domain with C1 boundary and that 0 ∈ Ω, where 1 < p < N ,

−∞ < a < N−p
p , 1 ≤ l < Np

N−p and α < (1 + a)l + N
(
1 − l

p

)
. Then the embedding

W 1,p
0 (Ω, |x|−ap) ↪→ Ll(Ω, |x|−α) is compact.

In the rest of this section, we recall the weighted version of the Concentration
Compactness Principle due to Xuan [28], the readers can see the original papers by
Lions [20, 21] for the non-singular case.

Proposition 1.2 (see [28]). Let 1 < p < N , −∞ < a < N−p
p , a ≤ c ≤ a + 1,

p∗a,c =
Np

N−(1+a−c)p , and let M+(R) be the space of positive bounded measures on RN .

Suppose that {un} ⊂ W 1,p
0 (Ω, |x|−ap) is a sequence such that

un ⇀ u in W 1,p
0 (Ω, |x|−ap),

||x|−a|∇un||p ⇀ µ in M+(RN ),

||x|−c|un||p
∗
a,c ⇀ ν in M+(RN ),

un(x) → u(x) a.e. on RN .

Then there are the following statements:

(i) There exists some at most countable set J , a family {xj : j ∈ J} of distinct
points in RN and a family {νj : j ∈ J} of positive numbers such that

ν = ||x|−c|u||p
∗
a,c +

∑
j∈J

νjδxj ,

where δxj is the Dirac unitary mass concentrated at xj ∈ RN .
(ii) The following inequality holds

µ ≥ ||x|−a|∇u||p +
∑
j∈J

µjδxj
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for some family {µj : j ∈ J} of positive numbers satisfying Sa,cν
p

p∗a,c

j ≤
µj for all j ∈ J , where the constant Sa,c is given by (1.5). In particular,∑

j∈J ν
p

p∗a,c

j < +∞.

2. Main result

In this section, we shall state and prove the main result of the paper. We use the
letters Ci to denote positive constants whose values are changed from line to line. In
order to state the main result of the paper, we introduce the following hypotheses:

(F1) There exist C > 0 and p < q < min
{

Np
N−p ,

p(N−bp)
N−(a+1)p

}
such that

|f(x, t)| ≤ C(1 + |t|q−1),

for all (x, t) ∈ Ω× R;
(F2) limt→0

f(x,t)
|t|p−1 = 0 uniformly in x ∈ Ω;

(F3) There exists p < θ < min
{

Np
N−p ,

p(N−bp)
N−(a+1)p

}
such that

0 < θF (x, t) := θ

∫ t

0

f(x, s)ds ≤ f(x, t)t,

for all x ∈ Ω and t > 0.

There are many functions satisfying the conditions (F1)-(F3). A typical example
of such functions is given by

f(x, t) =
k∑

i=1

γi(x)|t|qi−1,

where k ∈ N∗, p < qi < min
{

Np
N−p ,

p(N−bp)
N−(a+1)p

}
and γi : Ω → (0,+∞) is a continuous

function, i = 1, 2, ..., k.

Definition 2.1. We say that u ∈ X = W 1,p
0 (Ω, |x|−ap) is a weak solution of problem

(1.1) if

M

(∫
Ω

|x|−ap|∇u|p dx
)∫

Ω

|x|−ap|∇u|p−2∇u · ∇v dx

−λ

∫
Ω

|x|−bpf(x, u)v dx−
∫
Ω

|x|−cp∗
a,c |u|p

∗
a,c−2uv dx = 0, ∀v ∈ X.

Theorem 2.2. Assume that the conditions (M0) and (F1)-(F3) are satisfied. Then
there exists λ∗ > 0 such that, for all λ ≥ λ∗, problem (1.1) has a positive solution.
Moreover, if uλ is a solution of problem (1.1) then limλ→+∞ ∥uλ∥a,p = 0.

Here we are assuming, without loss of generality, that the Kirchhoff function M(t)
is unbounded. Contrary case, the truncation on M(t) is not necessary. From (M0),
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given r ∈ R such that m0 < r < θ
pm0, there exists t0 > 0 such that M(t0) = r. We

set

Mr(t) :=

{
M(t), 0 ≤ t ≤ t0,

r, t ≥ t0.
(2.1)

From (M0) and (2.1) we get

Mr(t) ≤ r, ∀t ≥ 0. (2.2)

As we shall see, the proof of Theorem 2.2 is based on a careful study of the solutions
of the following auxiliary problem

−Mr

(∫
Ω
|x|−ap|∇u|p dx

)
div
(
|x|−ap|∇u|p−2∇u

)
= λ|x|−bpf(x, u) + |x|−cp∗

a,c |u|p
∗
a,c−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(2.3)

where f, a, b, c, and λ are as in Section 1. We shall prove the following auxiliary result.

Theorem 2.3. Assume that the conditions (M0) and (F1)− (F3) are satisfied. Then,

there exists λ0 > 0 such that for all λ ≥ λ0 and all r ∈
(
m0,

θ
pm0

)
, problem (2.3) has

a positive solution.

Because we want to find a positive solution, we can assume that f(x, t) = 0 for all
x ∈ Ω and t ≤ 0. A function u ∈ X is said to be a weak solution of problem (2.3) if

Mr

(∫
Ω

|x|−ap|∇u|p dx
)∫

Ω

|x|−ap∇u · ∇v dx− λ

∫
Ω

|x|−bpf(x, u)v dx

−
∫
Ω

|x|−cp∗
a,c |u|p

∗
a,c−2uv dx = 0

for all v ∈ X. Hence, we shall look for weak solutions of (2.3) by finding critical
points of the C1− functional Ir,λ : X → R given by the formula

Ir,λ(u) =
1

p
M̂r

(∫
Ω

|x|−ap|∇u|p dx
)
− λ

∫
Ω

|x|−bpF (x, u) dx

− 1

p∗a,c

∫
Ω

|x|cp
∗
a,c |u|p

∗
a,c dx,

where M̂(t) =
∫ t

0
M(s) ds. Note that

I ′r,λ(u)(v) = Mr

(∫
Ω

|x|−ap|∇u|p dx
)∫

Ω

|x|−ap|∇u|p−2∇u · ∇v dx

−λ

∫
Ω

|x|−bpf(x, u)v dx−
∫
Ω

|x|−cp∗
a,c |u|p

∗
a,c−2uv dx,

for all v ∈ X. Moreover, if the critical point is nontrival, by the maximum principle
(see [24]), we conclude that it is a positive solution of the problem.

We say that a sequence {un} ⊂ X is a Palais-Smale sequence for the functional
Ir,λ at level cr,λ ∈ R if

Ir,λ(un) → cr,λ and I ′r,λ(un) → 0 in X∗,
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where X∗ is the dual space of X. If every Palais-Smale sequence of Ir,λ has a strong
convergent subsequence, then one says that Ir,λ satisfies the Palais-Smale condition
((PS) condition for short), see [3].

Lemma 2.4. For all λ > 0, there exist positive constants ρ and γ such that Ia,λ(u) ≥
γ > 0 for all u ∈ X with ∥u∥a,p = ρ.

Proof. From (F2) for each ϵ > 0, there exists δ > 0 such that

|f(x, t)| < ϵ|t|p−1, ∀|t| < δ and all x ∈ Ω.

Hence, by (F1), for each ϵ > 0, there exists a constant Cϵ > 0 such that

|f(x, t)| ≤ ϵ|t|p−1 + Cϵ|t|q−1, ∀t ∈ R and all x ∈ Ω.

This leads to the fact that

|F (x, t)| ≤ ϵ

p
|t|p + Cϵ

q
|t|q, ∀t ∈ R and all x ∈ Ω. (2.4)

By Lemma 1.1, there exist two positive constants C1, C2 such that

C1

∫
Ω

|x|−bp|u|p dx ≤
∫
Ω

|x|−ap|∇u|p dx

and

C2

∫
Ω

|x|−bp|u|q dx ≤
∫
Ω

|x|−ap|∇u|p dx,

for all u ∈ X.
Hence, by (M0) and (2.4), for all u ∈ X, we get

Ir,λ(u) =
1

p
M̂r

(∫
Ω

|x|−ap|∇u|p dx
)
− λ

∫
Ω

|x|−bpF (x, u) dx

− 1

p∗a,c

∫
Ω

|x|−cp∗
a,c |u|p

∗
a,c dx

≥ m0

p
∥u∥pa,p − λ

∫
Ω

|x|−bp

(
ϵ

p
|u|p + Cϵ

q
|u|q
)

dx

− 1

p∗a,cS
p∗a,c
p

a,c

∥u∥p
∗
a,c

a,p

≥ m0

p
∥u∥pa,p − λ

ϵ

pC1
∥u∥pa,p − λ

Cϵ

qC2
∥u∥qa,p −

1

p∗a,cS
p∗a,c
p

a,c

∥u∥p
∗
a,c

a,p .

For λ > 0, let ϵ = m0C1

2λ , we get

Ir,λ(w) ≥
m0

2p
∥u∥pa,p − λ

Cϵ

qC2
∥u∥qa,p −

1

p∗a,cS
p∗a,c
p

a,c

∥u∥p
∗
a,c

a,p

= ∥u∥pa,p

m0

2p
− λ

Cϵ

qC2
∥u∥q−p

a,p − 1

p∗a,cS
p∗a,c
p

a,c

∥u∥p
∗
a,c−p

a,p

 .
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Since p < q < min
{

Np
N−p ,

p(N−bp)
N−(a+1)p

}
≤ Np

N−p ≤ Np
N−(1+a−c)p = p∗a,c, there exist

positive constants ρ and γ such that Ir,λ(u) ≥ γ > 0 for all u ∈ X with ∥u∥a,p = ρ. □

Lemma 2.5. For all λ > 0, there exists e ∈ X with ∥e∥X > ρ such that Ir,λ(e) < 0.

Proof. From (F3), we have∫ t

t0

θ

s
ds ≤

∫ t

t0

f(x, s)

F (x, s)
ds, ∀t > t0,

so that

F (x, t) ≥ C3t
θ, ∀t > t0,

where C3 > 0. Hence, by the continuity of f , there exists C4 > 0 such that

F (x, t) ≥ C3t
θ − C4, ∀(x, t) ∈ Ω× R. (2.5)

Fix u0 ∈ C∞
0 (Ω) with u0 ≥ 0 and ∥u0∥a,p = 1. Using (2.2) and (2.5), for all t > 0

large enough, we have

Ir,λ(tu0) =
1

p
M̂r

(∫
Ω

|x|−ap|∇tu0|p dx
)
− λ

∫
Ω

|x|−bpF (x, tu0) dx

− 1

p∗a,c

∫
Ω

|x|−cp∗
a,c |tu0|p

∗
a,c dx

≤ r

p
tp − λC3t

θ

∫
Ω

|x|−bp|u0|θ dx+ λC4

∫
Ω

|x|−bp dx

− tp
∗
a,c

p∗a,c

∫
Ω

|x|−cp∗
a,c |u0|p

∗
a,c dx.

Since θ > p and
∫
Ω
|x|−bp dx < +∞, there exists a positive constant t∗ > 0 large

enough such that Ir,λ(t∗u0) < 0. Thus, the result follows by considering e = t∗u0. □

Using a version of the Mountain pass theorem due to Ambrosetti and Rabinowitz
without (PS) condition (see [3]), there exists a sequence {un} ⊂ X such that

Ir,λ(un) → cr,λ, I ′r,λ(un) → 0 as n → ∞,

where cr,λ = infη∈Γ maxt∈[0,1] Ir,λ(η(t)) and

Γ = {η ∈ C([0, 1], X) : η(0) = 0, η(1) = e} .

Lemma 2.6. It holds that

lim
λ→+∞

cr,λ = 0.

Proof. Since the functional Ir,λ has the Mountain pass geometry (see Lemma 2.4 and
Lemma 2.5), it follows that there exists tλ > 0 verifying Ir,λ(tλu0) = maxt≥0 Ir,λ(tu0),
where u0 is the function given by Lemma 2.5.
From this, we infer that d

dtIr,λ(tλu0)(tλu0) = 0 or

0 = Mr

(
∥tλu0∥pa,p

) ∫
Ω

|x|−ap|∇tλu0|p dx− λ

∫
Ω

|x|−bpf(x, tλu0)tλu0 dx
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− t
p∗
a,c

λ

∫
Ω

|x|−cp∗
a,c |u0|p

∗
a,c dx.

Hence,

tpλMr(|tλ|p) = λ

∫
Ω

|x|−bpf(x, tλu0)tλu0 dx+ t
p∗
a,c

λ

∫
Ω

|x|−cp∗
a,c |u0|p

∗
a,c dx. (2.6)

From (2.2), (2.6) and (F3), we get

a ≥ t
p∗
a,c−p

λ

∫
Ω

|x|−cp∗
a,c |u0|p

∗
a,c dx,

which implies that {tλ} is bounded. Thus, there exist a sequence λn → +∞ and
t1 ≥ 0 such that tλn → t1 as n → ∞. Consequently, there is C3 > 0 such that

tpλn
Mr(t

p
λn

) ≤ C3, ∀n ∈ N,

and ∀n ∈ N,

λn

∫
Ω

|x|−bpf(x, tλnu0)tλnu0 dx+ t
p∗
a,c

λn

∫
Ω

|x|−cp∗
a,c |u0|p

∗
a,c dx ≤ C3. (2.7)

If t1 > 0, by (2.7) and the Dominated Convergence Theorem,

lim
n→∞

∫
Ω

|x|−bpf(x, tλnu0)tλnu0 dx =

∫
Ω

|x|−bpf(x, t1u0)t1u0 dx > 0,

and thus (2.7) leads to

lim
n→∞

(
λn

∫
Ω

|x|−bpf(x, tλnu0)tλnu0 dx+ t
p∗
a,c

λn

∫
Ω

|x|−cp∗
a,c |u0|p

∗
a,c dx

)
= +∞,

which is an absurd. Thus, we conclude that t1 = 0.
Now, let us consider the path η∗(t) = te for t ∈ [0, 1], which belongs to Γ, to get

the following estimate

0 < cr,λ ≤ max
t∈[0,1]

Ir,λ(η∗(t)) = IR,λ(tλu0) ≤
1

p
M̂r(t

p
λ).

In this way,

lim
λ→+∞

M̂r(t
p
λ) = 0,

which helps us to get limλ→+∞ cr,λ = 0. □

Lemma 2.7. Let {un} ⊂ X be a sequence such that

Ir,λ(un) → cr,λ, I ′r,λ(un) → 0 as n → ∞. (2.8)

Then {un} is bounded.

Proof. Assuming by contradiction that {un} is not bounded inX, up to a subsequence
if it is necessary, we have ∥un∥a,p → +∞ as n → ∞. It follows from (2.8), (M0) and
(F3) that for n large enough

1 + cr,λ + ∥un∥a,p

≥ Ir,λ(un)−
1

θ
I ′r,λ(un)(un)
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=
1

p
M̂r(∥un∥pa,p)− λ

∫
Ω

|x|−bpF (x, un) dx− 1

p∗a,c

∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c dx

− 1

θ
Mr(∥un∥pa,p)

∫
Ω

|x|−ap|∇un|p dx+
λ

θ

∫
Ω

|x|−bpf(x, un)un dx

+
1

θ

∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c dx

≥
(
m0

p
− r

θ

)
∥un∥pa,p −

λ

θ

∫
Ω

|x|−bp (f(x, un)un − θF (x, un)) dx

+

(
1

θ
− 1

p∗a,c

)∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c dx

≥
(
m0

p
− r

θ

)
∥un∥pa,p.

Since r < m0

p θ and θ < p∗a,c, the sequence {un} is bounded in X. □

Proof of Theorem 2.3. From Lemma 2.4, we have

lim
λ→+∞

cr,λ = 0. (2.9)

Therefore, there exists λ0 > 0 such that

cr,λ <

(
1

θ
− 1

p∗a,c

)
(Sa,cm0)

N
(1+a−c)p , (2.10)

for all λ ≥ λ0, where Sa,c is given by (2.4). Now, fix λ ≥ λ0 and let us show that
problem (2.3) admits a nontrival solution. From Lemmas 2.4 and 2.5, there exists a
bounded sequence {un} ⊂ X verifying

Ir,λ(un) → cr,λ, I ′r,λ(un) → 0 as n → ∞. (2.11)

Hence, up to subsequences, we may assume that {un} converges weakly to u ∈ X.

Then {un} converges strongly to u in Ll(Ω, |x|−α) for 1 ≤ l < Np
N−p and α < (1 +

a)l +N
(
1− l

p

)
and un(x) → u(x) a.e. x ∈ Ω.

From the concentration-compactness principle stated in Proposition 1.2, there exist
non-negative measures µ and ν and a countable family {xj : j ∈ J} ⊂ Ω such that

||x|−a|∇un||p ⇀ µ, ||x|−c|un||p
∗
a,c ⇀ ν, (2.12)

where

ν = ||x|−c|u||p
∗
a,c +

∑
j∈J

νjδxj ,

µ ≥ ||x|−a|∇u||p +
∑
j∈J

µjδxj ,

Sa,cν
p

p∗a,c

j ≤ µj , ∀j ∈ J. (2.13)

We shall prove that {un} converges strongly to u in Lp∗
a,c(Ω, |x|−cp∗

a,c) by showing
that J = ∅. Arguing by contradiction, assume that J ̸= ∅ and fix j ∈ J . Consider
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ϕj ∈ C∞
0 (Ω, [0, 1]) such that ϕj ≡ 1 on B1(0), ϕj ≡ 0 on Ω\B2(0) and |∇ϕj | ≤ 2.

Defining ϕj,ϵ = ϕj(
x−xj

ϵ ), where ϵ > 0, we have that {ϕj,ϵun} is bounded in X. Thus
I ′r,λ(un)(ϕj,ϵun) → 0 as n → ∞, that is,

Mr(∥un∥pa,p)
∫
Ω

|x|−ap|∇un|p−2∇un · ∇(ϕj,ϵun) dx

−λ

∫
Ω

|x|−bpf(x, un)ϕj,ϵun dx

−
∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c−2unϕj,ϵun dx → 0 as n → ∞.

Hence,

Mr(∥un∥pa,p)
∫
Ω

|x|−apun|∇un|p−2∇un · ∇ϕj,ϵ dx

= −Mr(∥un∥pa,p)
∫
Ω

|x|−ap|∇un|pϕj,ϵ dx+ λ

∫
Ω

|x|−bpf(x, un)unϕj,ϵ dx

+

∫
Ω

|x|−cp∗
a,c |un|p

∗
a,cϕj,ϵ dx+ o(1). (2.14)

Since the support of ϕj,ϵ is B2ϵ(xj), using the Hölder inequality and the Dominated
Convergence Theorem we obtain∣∣∣∣∫

Ω

|x|−apun|∇un|p−2∇un · ∇ϕj,ϵ dx

∣∣∣∣
≤
∫
B2ϵ(xj)

|x|−ap∇un|p−1|un∇ϕj,ϵ| dx

=

∫
B2ϵ(xj)

(|x|−a(p−1)∇un|p−1)(|x|−a|un∇ϕj,ϵ|) dx

≤

(∫
B2ϵ(xj)

|x|−ap|∇un|p dx

) p−1
p
(∫

B2ϵ(xj)

|x|−ap|un∇ϕj,ϵ|p dx

) 1
p

≤ C4

(∫
B2ϵ(xj)

|x|−ap|un|p|∇ϕj,ϵ|p dx

) 1
p

≤ C4

(∫
B2ϵ(xj)

|x|−cp∗
a,c |un|p

∗
a,c dx

) 1
p∗a,c

×

(∫
B2ϵ(xj)

|x|−
N(a−c)
1+a−c |∇ϕj,ϵ|

N
1+a−c dx

) 1+a−c
N

≤ C4

(∫
B2ϵ(xj)

|x|−cp∗
a,c |un|p

∗
a,c dx

) 1
p∗a,c

→ 0 as n → 0 and ϵ → 0.
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Since {un} is bounded, we may assume that ∥un∥a,p → t2 ≥ 0 as n → ∞. Observing
that M(t) is continuous, we then have M(∥un∥pa,p) → M(tp2) ≥ m0 > 0 as n → ∞.
Hence,

Mr(∥un∥pa,p)
∫
Ω

|x|−apun|∇un|p−2∇un · ∇ϕj,ϵ dx → 0 as n → ∞. (2.15)

Similarly, we have∫
Ω

|x|−bpf(x, un)ϕj,ϵun dx → 0 as n → ∞ and ϵ → 0. (2.16)

From (2.14)-(2.16), letting n → ∞ in (2.14) we get∫
Ω

ϕj,ϵdν ≥ Mr(t
p
2)

∫
Ω

ϕj,ϵdµ+ oϵ(1).

Now, letting ϵ → 0 we deduce that

ϕj(0)νj = ϕj(0)µjMr(t
p
2)

and thus

νj ≥ µjm0. (2.17)

Combining (2.13) and (2.17) we obtain

νj ≥ (Sa,cm0)
N

(1+a−c)p . (2.18)

Now we shall prove that (2.18) cannot occur, and therefore the set J = ∅. Indeed,

arguing by contradiction, let us suppose that νj ≥ (Sa,cm0)
N

(1+a−c)p for some j ∈ J .
Since {un} is a (PS)cr,λ for the functional Ir,λ, from the conditions (F3) and (M0),

and m0 < r < θ
pm0 we have

cr,λ = Ir,λ(un)−
1

θ
I ′r,λ(un)(un) + 0n(1)

≥ 1

p
M̂r(∥un∥pa,p)−

1

θ
Mr(∥un∥pa,p)∥un∥pa,p

+

(
1

θ
− 1

p∗a,c

)∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c dx+ on(1)

≥
(
m0

p
− r

θ

)
∥un∥pa,p +

(
1

θ
− 1

p∗a,c

)∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c dx+ on(1)

≥
(
1

θ
− 1

p∗a,c

)∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c dx+ on(1)

≥
(
m0

p
− R

θ

)
∥un∥pa,p +

(
1

θ
− 1

p∗a,c

)∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c dx+ on(1)

≥
(
1

θ
− 1

p∗a,c

)∫
Ω

|x|−cp∗
a,c |un|p

∗
a,cϕj,ϵ dx+ on(1).
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Letting n → ∞ and ϵ → 0 we get

cr,λ ≥
(
1

θ
− 1

p∗a,c

)
νj ≥

(
1

θ
− 1

p∗a,c

)
(Sa,cm0)

N
(1+a−c)p ,

which contradicts (2.10). Thus, J = ∅ and un → u in Lp∗
a,c(Ω, |x|−cp∗

a,c) as n → ∞.
Now, we prove that un → u in X as n → ∞. From (2.1) and the boundedness of

∥un − u∥a,p we have I ′r,λ(un)(un − u) → 0 as n → ∞ or

Mr(∥un∥pa,p)
∫
Ω

|x|−ap|∇un|p−2∇un(∇un −∇u) dx

− λ

∫
Ω

|x|−bpf(x, un)(un − u) dx

−
∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c−2un(un − u) dx → 0 as n → ∞. (2.19)

On the other hand, by Lemma 1.1 we have∣∣∣∣∫
Ω

|x|−bpf(x, un)(un − u) dx

∣∣∣∣
≤
∫
Ω

|x|−bp|f(x, un)||un − u| dx

≤ C

∫
Ω

|x|−bp(1 + |un|q−1)|un − u| dx

≤ C

(∫
Ω

|x|−bp dx

) q−1
q
(∫

Ω

|x|−bp|un − u|q dx
) 1

q

+ C

(∫
Ω

|x|−bp|un|q dx
) q−1

q
(∫

Ω

|x|−bp|un − u|q dx
) 1

q

→ 0 as n → ∞

and ∣∣∣∣∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c−2un(un − u) dx

∣∣∣∣
≤
∫
Ω

|x|−cp∗
a,c |un|p

∗
a,c−1|un − u| dx

≤
(∫

Ω

|x|−cp∗
a,c |un|p

∗
a,c dx

) p∗a,c−1

p∗a,c

(∫
Ω

|x|−cp∗
a,c |un − u|p

∗
a,c dx

) 1
p∗a,c

→ 0 as n → ∞.

Hence, by (2.19) we obtain

Mr(∥un∥pa,p)
∫
Ω

|x|−ap|∇un|p−2∇un(∇un −∇u) dx → 0 as n → ∞.
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By the condition (M0) we have∫
Ω

|x|−ap|∇un|p−2∇un(∇un −∇u) dx → 0 as n → ∞.

On the other hand, since {um} converges weakly to u in X, we have

lim
m→∞

∫
Ω

|x|−ap|∇u|p−2∇u(∇um −∇u) dx = 0.

Hence,

lim
m→∞

∫
Ω

|x|−ap
(
|∇um|p−2∇um − |∇u|p−2∇u

)
(∇um −∇u) dx = 0.

or

lim
m→∞

∫
Ω

(
|∇vm|p−2∇vm − |∇v|p−2∇v

)
(∇vm −∇v) dx = 0, (2.20)

where ∇vm = |x|−a∇um and ∇v = |x|−a∇u.
Let us recall that the following inequalities hold

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ C5(|ξ|+ |η|)p−2|ξ − η|2 if 1 < p < 2,

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ C6|ξ − η|p if p ≥ 2, (2.21)

for all ξ, η ∈ RN , where C5 and C6 are positive constants.
If 1 < p < 2, using the Hölder inequality, by (2.20), (2.21) we have

0 ≤ ∥un − u∥pa,p = ∥|∇vn −∇v|∥pLp(Ω)

≤
∫
Ω

|∇vn −∇v|p(|∇vn|+ |∇v|)
p(p−2)

2 (|∇vn|+ |∇v|)
p(2−p)

2 dx

≤
(∫

Ω

|∇vn −∇v|2(|∇vn|+ |∇v|)p−2 dx

) p
2

×
(∫

Ω

(|∇vn|+ |∇v|)p dx
) 2−p

2

≤ 1

C
p
2
5

(∫
Ω

(|∇vn|p−2∇vn − |∇v|p−2∇v)(∇vn −∇v) dx

) p
2

×
(∫

Ω

(|∇vn|+ |∇v|)p dx
) 2−p

2

≤ C5

(∫
Ω

(|∇vn|p−2∇vn − |∇v|p−2∇v)(∇vm −∇v) dx

) p
2

→ 0 as n → ∞,

where C5 is a positive constant. If p ≥ 2, one has

0 ≤ ∥un − u∥pa,p = ∥|∇vn −∇v|∥pLp(Ω)

≤ 1

C6

∫
Ω

(|∇vn|p−2∇vn − |∇v|p−2∇v)(∇vn −∇v) dx
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→ 0 as n → ∞,

Therefore, we conclude that {un} converges strongly to u in X and u is a nontrival
solution of problem (2.3). □

Proof of Theorem 2.2. Let λ0 be as in Theorem 2.3 and, for λ ≥ λ0, let uλ be the
nontrival solution of problem (1.1) found in Theorem 2.3. We claim that there exists
λ∗ ≥ λ0 such that ∥uλ∥pa,p ≤ t0 for all λ ≥ λ∗. From this we have Mr(∥uλ∥pa,p) =
M(∥uλ∥pa,p) and thus uλ is a solution of problem (1.1).

If this claim does not hold, there exists a sequence {λn} ⊂ R such that ∥uλ∥pa,p ≥ t0.
Hence, we have

cλn ≥ 1

p
M̂(∥un∥pa,p)−

1

θ
M(∥un∥pa,p)∥un∥pa,p

≥
(
m0

p
− r

θ

)
∥un∥pa,p

≥
(
m0

p
− r

θ

)
t0,

which is an absurd.
Finally, in order to show that limλ→+∞ ∥uλ∥a,p = 0, it suffices to note that, from

(M0) and (F3), we have

cλ ≥ 1

p
M̂(∥uλ∥pa,p)−

1

θ
M(∥uλ∥pa,p)∥uλ∥pa,p

≥ m0

p
∥uλ∥pa,p −

1

θ
M(t0)∥uλ∥pa,p

=

(
m0

p
− r

θ

)
∥uλ∥pa,p.

From Lemma 2.6 again we have limλ→+∞ cλ = 0. Since m0 < r < θ
pm0, the proof of

Theorem 2.2 is now completed. □
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