تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,293 |
تعداد دریافت فایل اصل مقاله | 15,216,901 |
On the numerical approximation of Volterra integro-differential equation using Laplace transform | ||
Computational Methods for Differential Equations | ||
مقاله 8، دوره 8، شماره 2، تیر 2020، صفحه 305-313 اصل مقاله (256.79 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2020.27877.1378 | ||
نویسندگان | ||
Marjan Uddin* ؛ Musafir Uddin | ||
Department of basic sciences and islamiat, University of engineering and technology Peshawar, pakistan | ||
چکیده | ||
In this work we constructed a numerical scheme to approximate the Volterra integro- differential equations of convolution type using Laplace transform. The solution of the problem is recovered using inverse Laplace transform as contour integral in the complex plane. The integral is then approximated along a suitable contour using the trapezoidal rule with equal step size. The solution accuracy depends on optimal contour of integrations to compute accurately the inverse Laplace transform. For better accuracy two types of contour parabolic and hyperbolic are used which are available in the literature. The performance of the numerical scheme is tested for different examples. The actual error well agree with the corresponding error estimates of the proposed numerical scheme for both parabolic as well as hyperbolic contours. | ||
کلیدواژهها | ||
Volterra Integro-differential equation(VIDE)؛ Hyperbolic and parabolic contours؛ Laplace Transforms؛ Trapezoidal rule | ||
آمار تعداد مشاهده مقاله: 446 تعداد دریافت فایل اصل مقاله: 462 |