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Abstract In this paper, a direct method for solving Volterra-Fredholm integral equations with
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1. Introduction

Basis functions were used to derive solutions of dynamic systems [1, 2]. Integral
and integro-differential equations of convolution type and system of the first kind
integral equations that is an ill-posed problem is solved by basis functions [3, 4].
Stochastic integral equations arise in many applications such as mechanics, finance,
biomathematics, engineering, etc. Dynamic systems are mostly dependent on a noise
source followed by well-defined probability laws, so that modeling such problems re-
quires the use of different stochastic differential equations [5, 6, 7, 8]. Also linear and
nonlinear stochastic integral equations are proposed in recent years [9, 10]. Integral
equations with time delay frequently encountered in physical and biological modeling
processes. Delays occur frequently in chemical, transportation, electronic, communi-
cation, manufacturing and power systems. Delay integral equations (DIEs) and delay
integro-differential equations (DIDEs) are solved by different methods [11, 12, 13].
Because in most problems the accurate solution can not be solved exactly, we con-
strain to obtain approximate solution by numerical schemes.
We intend the following linear stochastic Volterra-Fredholm integral equation,

X(t) =f(t) +

∫ b

a

k1(s, t)X(s)ds+

∫ t

0

k2(s, t)X(s− τ)ds

+

∫ t

0

k3(s, t)X(s)dB(s), t ∈ [0, T ), τ ∈ (0, T ) (1.1)
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where X(t), f(t), k1(s, t), k2(s, t) and k3(s, t), for s, t ∈ [0, T ), are the stochastic
processes defined on the same probability space (Ω,F, P ), and X(t) is unknown. Also

B(t) is a Brownian motion process and
∫ t

0
k3(s, t)X(s)dB(s) is the Itô integral.

The present paper is organized as follows. After Introduction Section, Section 2
reviews block pulse functions and integration operational matrix and functions con-
taining time delay f(t − τ). In Section 3, we introduce concept of the stochastic
integration operational matrix. In Section 4, we solve stochastic Volterra-Fredholm
integral equations by using stochastic integration operational matrix. Section 5 is
allocated to error in block pulse functions approximation and in Section 6, we achieve
numerical examples to show the accuracy of the method and the culmination of paper
in Section 7 is the conclusion.

2. Block Pulse Functions (BPFs)

The aim of this section is to interprate notations and definition of the block pulse
functions that have been expressed entirely in [2].

2.1. Definition. We define the m-set of BPFs as,

φ
(m)
i (t) =

{
1 (i− 1)h ≤ t < ih,
0 otherwise,

(2.1)

with t ∈ [0, T ), i = 1, 2, ...,m and h = T
m .

The primary properties of BPFs are disjointness and orthogonality that can be ex-
pressed as follows

φ
(m)
i (t)φ

(m)
j (t) = δijφ

(m)
i (t), (2.2)

∫ T

0

φ
(m)
i (t)φ

(m)
j (t)dt = hδij , (2.3)

where i, j = 1, 2, ...,m and δij is Kronecker delta.

Also if m → ∞, then the BPFs set is complete; i.e. for every f ∈ L2([0, T )),
Parseval’s identity holds,∫ T

0

f2(t)dt =

∞∑
i=1

f2i ‖φ
(m)
i (t)‖2, (2.4)

where

fi =
1

h

∫ T

0

f(t)φ
(m)
i (t)dt, (2.5)
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by considering first m terms of BPFs, we can write them brevity as m-vector form

Φ(t) =
(
φ1(t), φ2(t), . . . , φm(t)

)T
, t ∈ [0, T ).

2.2. Functions approximation. A real bounded function f(t), which f(t) ∈
L2[0, T ), can be expanded into a block pulse series as

f(t) ' f̂m(t) =

m∑
i=1

fiφ
(m)
i (t), (2.6)

where fi is the block pulse coefficient with respect to the ith BPF φ
(m)
i (t). In the

vector form we have,

f(t) ' f̂m(t) = FT Φ(t) = ΦT (t)F, (2.7)

where

F =
(
f1, f2, . . . , fm

)T
.

Let k(s, t) ∈ L2
(
[0, T1)× [0, T2)

)
. It can be expanded as

k(s, t) = ΨT (s)KΦ(t) = ΦT (t)KT Ψ(s), (2.8)

where Ψ(s) and Φ(t) are m1 and m2 dimensional BPFs vectors respectively, and
K =

(
kij
)
, i = 1, 2, ...,m1, j = 1, 2, ...,m2 is the m1 × m2 block pulse coefficient

matrix with

kij =
1

h1h2

∫ T1

0

∫ T2

0

k(s, t)Ψ
(m1)
i (s)Φ

(m2)
j (t)dtds,

where h1 = T1

m1
, h2 = T2

m2
. For convenience, we put m1 = m2 = m.

2.3. Integration operational matrix. Computing
∫ t

0
φ
(m)
i (s)ds follows∫ t

0

φ
(m)
i (s)ds =

 0 0 ≤ t < (i− 1)h,
t− (i− 1)h (i− 1)h ≤ t < ih,
h ih ≤ t < T.

(2.9)

From [2], We will have:∫ t

0

Φ(s)ds ' PΦ(t), (2.10)

where operational matrix of integration is given by

P =
h

2


1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
...

. . .
...

0 0 0 . . . 1


m×m

. (2.11)
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So, the integral of every function f(t) can be approximated as follows∫ t

0

f(s)ds '
∫ t

0

FT Φ(s)ds ' FTPΦ(t). (2.12)

2.4. Functions containing time delay f(t−τ). In order to approximate a func-
tion containing time delay, we consider the whole block pulse function containing time
delay τ = (q+ λ)h with a nonnegative integer q and 0 ≤ λ < 1 that can be expressed
into its block pulse series in a vector form:

Φ(t− τ) =
(
(1− λ)Hq + λHq+1

)
Φ(t). (2.13)

In the above relation, the matrix (1−λ)Hq +λHq+1 is usually called the block pulse
operational matrix for time delay, or simply the delay operational matrix. Expressing
concretely, it is:

(q + 1)th-column
↓

(1− λ)Hq + λHq+1 =



0 · · · 0 1− λ λ 0 · · · 0
0 · · · 0 0 1− λ λ · · · 0
... · · ·

...
...

...
...

. . .
...

0 · · · 0 0 0 0 · · · λ
0 · · · 0 0 0 0 · · · 1− λ
0 · · · 0 0 0 0 · · · 0
... · · ·

...
...

...
... · · ·

...
0 · · · 0 0 0 0 · · · 0


m×m

.

(2.14)

Therefore, the block pulse series of a function containing time delay τ = (q+λ)h can
easily be obtained as :

f(t− τ) ' FT Φ(t− τ) = FT
(
(1− λ)Hq + λHq+1

)
Φ(t). (2.15)

3. Stochastic integration operational matrix

From [14], the Itô integral of every function f(t) can be approximated as follows

∫ t

0

f(s)dB(s) '
∫ t

0

FT Φ(s)dB(s) ' FTPSΦ(t). (3.1)
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Where stochastic operational matrix of integration is given by

PS =



B(h
2 ) B(h) B(h) . . . B(h)

0 B( 3h
2 )−B(h) B(2h)−B(h) . . . B(2h)−B(h)

0 0 B( 5h
2 )−B(2h) . . . B(3h)−B(2h)

...
...

...
. . .

...

0 0 0 . . . B( (2m−1)h
2 )−B((m− 1)h)


.

(3.2)

4. Solving stochastic Volterra-Fredholm integral equations with time
delay by using stochastic operational matrix

We intend following linear stochastic Volterra-Fredholm integral equations with
time delay,

X(t) = f(t)+

∫ b

a

k1(s, t)X(s)ds+

∫ t

0

k2(s, t)X(s− τ)ds

+

∫ t

0

k3(s, t)X(s)dB(s), t ∈ [0, T ), τ ∈ (0, T ). (4.1)

Usually we set [0,mh] instead of [a, b] in relation (4.1) to convenience the use of
block pulse functions.

We approximate X(t), f(t), k1(s, t), k2(s, t) and k3(s, t) by relations (2.7), (2.8) as
follows

X(t) ' XT Φ(t) = ΦT (t)X,

f(t) ' FT Φ(t) = ΦT (t)F,

k1(s, t) ' ΨT (s)K1Φ(t) = ΦT (t)KT
1 Ψ(s),

k2(s, t) ' ΨT (s)K2Φ(t) = ΦT (t)KT
2 Ψ(s).

k3(s, t) ' ΨT (s)K3Φ(t) = ΦT (t)KT
3 Ψ(s).

In the above approximates, X and F are stochastic block pulse coefficient vector,
and K1, K2 and K3 are stochastic block pulse coefficient matrix. We approximate
X(s− τ) as follows,

X(s− τ) ' XT Ψ(s− τ) ' XT
(
(1− λ)Hq + λHq+1

)
Ψ(s),

and by letting A = (1− λ)Hq + λHq+1,we can write,

X(s− τ) ' XTAΨ(s).
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With substituting above approximations in equation (4.1), we get

XT Φ(t) ' FT Φ(t) +XT
(∫ mh

0

Ψ(s)ΨT (s)ds
)
K1Φ(t)

+XTA
(∫ t

0

Ψ(s)ΨT (s)ds
)
K2Φ(t)

+XT
(∫ t

0

Ψ(s)ΨT (s)dB(s)
)
K3Φ(t). (4.2)

Let Ki
2 be the ith row of the constant matrix K2, and Ki

3 be the ith row of the
constant matrix K3, and Ri be the ith row of the integration operational matrix P ,
Ri

S be the ith row of the stochastic integration operational matrix PS , DKi
2

be a

diagonal matrix with Ki
2 as its diagonal entries, and DKi

3
be a diagonal matrix with

Ki
3 as its diagonal entries. By the previous relations and assuming m1 = m2, we have,

(∫ mh

0

Ψ(s)ΨT (s)ds
)
K1Φ(t) =

(∫ mh

0

Φ(s)ΦT (s)ds
)
K1Φ(t)

= (hI)K1Φ(t) = B1Φ(t). (4.3)

where

B1 = h



k111 k112 k113 · · · k11m

k121 k122 k123 · · · k12m

k131 k132 k133 · · · k13m

...
...

...
. . .

...

k1m1 k1m2 k1m3 · · · k1mm


m×m

, (4.4)

(∫ t

0

Ψ(s)ΨT (s)ds
)
K2Φ(t) =

(∫ t

0

Φ(s)ΦT (s)ds
)
K2Φ(t)

=



R1Φ(t)K1
2Φ(t)

R2Φ(t)K2
2Φ(t)

...

RmΦ(t)Km
2 Φ(t)


=



R1DK1
2

R2DK2
2

...

RmDKm
2


Φ(t) = B2Φ(t), (4.5)
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where

B2 =
h

2



k211 2k212 2k213 · · · 2k21m

0 k222 2k223 · · · 2k22m

0 0 k233 · · · 2k23m

...
...

...
. . .

...

0 0 0 · · · k2mm


m×m

, (4.6)

also, (∫ t

0

Ψ(s)ΨT (s)dB(s)
)
K3Φ(t) =

(∫ t

0

Φ(s)ΦT (s)dB(s)
)
K3Φ(t)

=



R1
SΦ(t)K1

3Φ(t)

R2
SΦ(t)K2

3Φ(t)

...

Rm
S Φ(t)Km

3 Φ(t)


=



R1
SDK1

3

R2
SDK2

3

...

Rm
S DKm

3


Φ(t) = B3Φ(t), (4.7)

where

B3 =



k311B(h
2
) k312B(h) k313B(h) · · · k31mB(h)

0 k322

(
B( 3h

2
) − B(h)

)
k323

(
B(2h) − B(h)

)
· · · k32m

(
B(2h) − B(h)

)
0 0 k333

(
B( 5h

2
) − B(2h)

)
· · · k33m

(
B(3h) − B(2h)

)
.
.
.

.

.

.

.

.

.
.
. .

.

.

.

0 0 0 · · · k3mm

(
B(

(2m−1)h
2

) − B((m− 1)h)
)


.

(4.8)

With substituting relations (4.3), (4.5) and (4.7) in (4.2), we get

XT Φ(t) ' FT Φ(t) +XTB1Φ(t) +XTAB2Φ(t) +XTB3Φ(t).

Then,

XT (I −B1 −AB2 −B3) ' FT . (4.9)

So, by setting M = (I −B1 −AB2 −B3)T and replacing ' by =, we will have,

MX = F. (4.10)

Which is a linear system of equations with lower triangular coefficients matrix that
gives the approximate block pulse coefficient of the unknown stochastic processes
X(t).
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5. Error estimation and rate of convergence

In this section, we will show that the rate of convergence of the proposed method
for solving stochastic Volterra-Fredholm integral equations with time delay is O(h).

Theorem 5.1. Suppose that f(t) ∈ C1
(
[0, 1)

)
and e(t) = f(t)− f̂m(t), t ∈ I = [0, 1),

which f̂m(t) =
∑m

i=1 fiφ
(m)
i (t) is the block pulse series of f(t). Then,

‖e(t)‖ ≤ h

2
√

3
sup
t∈I
|f ′(t)|. (5.1)

Proof. Let,

ei(t) =

{
f(t)− fi t ∈ Di,
0 t ∈ I −Di.

(5.2)

where Di = {t : (i− 1)h ≤ t < ih, h = 1
m} and i = 1, 2, ...,m.

We have,

ei(t) = f(t)− 1

h

∫ ih

(i−1)h
f(s)ds =

1

h

∫ ih

(i−1)h

(
f(t)− f(s)

)
ds,

now by mean value theorem, we get,

ei(t) =
f ′(ηi)

h

∫ ih

(i−1)h
(t− s)ds = f ′(ηi)

(
t+ (−i+

1

2
)h
)
,

where t, ηi ∈ Di, for i = 1, 2, ...,m. Then,

‖ei(t)‖2 =

∫ ih

(i−1)h
|ei(t)|2dt =

(
f ′(ηi)

)2 ∫ ih

(i−1)h

(
t+ (−i+

1

2
)h
)2
dt =

h3

12

(
f ′(ηi)

)2
,

Consequently

‖e(t)‖2 =

∫ 1

0

|e(t)|2dt =

∫ 1

0

( m∑
i=1

ei(t)
)2
dt

=

∫ 1

0

[ m∑
i=1

e2i (t) + 2
∑
i<j

ei(t)ej(t)
]
dt =

m∑
i=1

∫ 1

0

e2i (t)dt

=

m∑
i=1

‖ei(t)‖2 =
h3

12

m∑
i=1

(
f ′(ηi)

)2 ≤ h2

12
sup
t∈I
|f ′(t)|2, (5.3)

or,

‖e(t)‖ ≤ h

2
√

3
sup
t∈I
|f ′(t)|.

Hence, ‖e(t)‖ = O(h). �
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Theorem 5.2. Suppose that f(s, t) is a function in L2
(
[0, 1) × [0, 1)

)
and e(s, t) =

f(s, t) − f̂m(s, t), which f̂m(s, t) =
∑m

i=1

∑m
j=1 fijψ

(m)
i (s)φ

(m)
j (t) is the block pulse

series of f(s, t). Then,

‖e(s, t)‖ ≤ h

2
√

3

(
sup

(x,y)∈D
|f ′s(x, y)|2 + sup

(x,y)∈D
|f ′t(x, y)|2

) 1
2

. (5.4)

Proof. Let,

eij(s, t) =

{
f(s, t)− fij (s, t) ∈ Dij ,
0 (s, t) ∈ D −Dij .

(5.5)

where Dij = {(s, t) : (i−1)h ≤ s < ih, (j−1)h ≤ t < jh, h = 1
m} and i, j = 1, 2, ...,m,

we have,

eij(s, t) = f(s, t)− 1

h2

∫ ih

(i−1)h

∫ jh

(j−1)h
f(x, y)dydx

=
1

h2

∫ ih

(i−1)h

∫ jh

(j−1)h

(
f(s, t)− f(x, y)

)
dydx, (5.6)

now by mean value theorem, we get,

eij(s, t) =
1

h2

∫ ih

(i−1)h

∫ jh

(j−1)h

(
(s− x)f ′s + (t− y)f ′t

)
dydx

= f ′s

(
s+ (−i+

1

2
)h
)

+ f ′t

(
t+ (−j +

1

2
)h
)
. (5.7)

Then,

‖eij(s, t)‖2 =

∫ ih

(i−1)h

∫ jh

(j−1)h
|eij(s, t)|2dtds =

h4

12

(
f ′2s + f ′2t

)
, (ηi, ηj) ∈ Dij .

Consequently

‖e(s, t)‖2 =

∫ 1

0

∫ 1

0

|e(s, t)2dtds

=

∫ 1

0

∫ 1

0

( m∑
i=1

m∑
j=1

eij(s, t)
)2
dtds

=

m∑
i=1

m∑
j=1

∫ 1

0

∫ 1

0

e2ij(s, t)dtds =

m∑
i=1

m∑
j=1

‖eij(s, t)‖2

=
h4

12

m∑
i=1

m∑
j=1

(
f ′2s (ηi, ηj) + f ′2t (ηi, ηj)

)
≤ h2

12

(
sup

(x,y)∈D
|f ′s(x, y)|2 + sup

(x,y)∈D
|f ′t(x, y)|2

)
, (5.8)

or,

‖e(s, t)‖ ≤ h

2
√

3

(
sup

(x,y)∈D
|f ′s(x, y)|2 + sup

(x,y)∈D
|f ′t(x, y)|2

) 1
2

.
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Hence, ‖e(s, t)‖ = O(h). �

Theorem 5.3. Suppose X(t) is exact solution of (4.1) and Ŷm(t) is the proposed

method solution and so X(t) ' X̂m(t), Y (t) ' Ŷm(t). Then

‖X(t)− Ŷm(t)‖∞ ≤
h

2
√

3

(
‖M−1‖

(
1 + (b− a)M1

+M2 +M3 sup
t∈I
|B(t)|

)
‖X ′‖∞ + ‖Y ′‖∞

)
, (5.9)

where M is defined in (4.10) and

‖X(t)− Ŷm(t)‖∞ = sup
t∈I
|X(t)− Ŷm(t)|,

Mj = sup
s,t∈I

|kj(s, t)|, j = 1, 2, 3.

Proof. We can write

sup
t∈I
|X(t)− Ŷm(t)| ≤ sup

t∈I
|X(t)− Y (t)|+ sup

t∈I
|Y (t)− Ŷm(t)|.

Furthermore from (5.4) we have

sup
t∈I
|Y (t)− Ŷm(t)| ≤ h

2
√

3
‖Y ′‖∞,

then it is enough to find a bound for supt∈I |X(t) − Y (t)|. We know that for any
arbitrary real bounded function f(t), which is square integrable in the interval t ∈
[0, 1), and for any ε > 0, there exists m such that the inequality ‖f − f̂m‖ < ε, holds.
So we can write Stochastic Itô integral equation (4.1) as

f(t) =X̂m(t)−
∫ b

a

k1(s, t)X̂m(s)ds−
∫ t

0

k2(s, t)X̂m(s− τ)ds

+

∫ t

0

k3(s, t)X̂m(s)dB(s) t ∈ [0, 1). (5.10)

If we substitute Y (t) instead of X(t) in above equation then the write hand side of

integral equation is exchanged by a new function that we denote it by f̂m(t). So we
have,

f̂(t) =Ŷm(t)−
∫ b

a

k1(s, t)Ŷm(s)ds−
∫ t

0

k2(s, t)Ŷm(s− τ)ds

+

∫ t

0

k3(s, t)Ŷm(s)dB(s) t ∈ [0, 1). (5.11)

From relation (4.10) we have

X(t) = M−1f(t), Y (t) = M−1f̂(t).

Consequently we have

sup
t∈I
|X(t)− Y (t)| ≤ ‖M−1‖ sup

t∈I
|f(t)− f̂(t)|. (5.12)
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For finding a bound for supt∈I |f(t)− f̂(t)|, we write,

f(t) =X(t)−
∫ b

a

k1(s, t)X(s)ds−
∫ t

0

k2(s, t)X(s− τ)ds

+

∫ t

0

k3(s, t)X(s)dB(s) t ∈ [0, 1).

and

f̂(t) =X̂m(t)−
∫ b

a

k1(s, t)X̂m(s)ds−
∫ t

0

k2(s, t)X̂m(s− τ)ds

+

∫ t

0

k3(s, t)X̂m(s)dB(s) t ∈ [0, 1).

So that,

f(t)− f̂(t) =X(t)− X̂m(t)−
∫ b

a

k1(s, t)
(
X(s)− X̂m(s)

)
ds

−
∫ t

0

k2(s, t)
(
X(s− τ)− X̂m(s− τ)

)
ds

−
∫ t

0

k3(s, t)
(
X(s)− X̂m(s)

)
dB(s).

Therefore,

sup |f(t)−f̂(t)| ≤ sup |X(t)− X̂m(t)|+ sup
∣∣∣ ∫ b

a

k1(s, t)
(
X(s)− X̂m(s)

)
ds
∣∣∣

+ sup
∣∣∣ ∫ t

0

k2(s, t)
(
X(s− τ)− X̂m(s− τ)

)
ds
∣∣∣

+ sup
∣∣∣ ∫ t

0

k3(s, t)
(
X(s)− X̂m(s)

)
dB(s)

∣∣∣
≤ sup |X(t)− X̂m(t)|+ sup

∫ b

a

|k1(s, t)||X(s)− X̂m(s)|ds

+ sup

∫ t

0

|k2(s, t)||X(s− τ)− X̂m(s− τ)|ds

+ sup

∫ t

0

|k3(s, t)||X(s)− X̂m(s)|dB(s)

≤ sup |X(t)− X̂m(t)|+ (b− a)M1 sup |X(t)− X̂m(t)|

+M2 sup |X(t− τ)− X̂m(t− τ)|+M3 sup |B(t)| sup |X(t)− X̂m(t)|

≤
(

1 + (b− a)M1 +M2 +M3 sup |B(t)|
) h

2
√

3
‖X ′‖∞,

so by substituting this bound in the inequality (5.12) we get,

sup
t∈I
|X(t)−Y (t)| ≤ ‖M−1‖

(
1+(b−a)M1 +M2 +M3 sup |B(t)|

) h

2
√

3
‖X ′‖∞, (5.13)
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then from relation (5.12) and (5.13) we have

‖X(t)−Ŷm(t)‖∞ ≤
h

2
√

3

(
‖M−1‖

(
1+(b−a)M1+M2+M3 sup

t∈I
|B(t)|

)
‖X ′‖∞+‖Y ′‖∞

)
,

(5.14)

and the proof is complete. �

6. Numerical examples

To show the efficiency of the proposed numerical method, we consider the follow-
ing examples. Because we don’t have examples with exact solutions, for given m, we
compute and plot the values of |X2m(t)−Xm(t)|. We do this with m = 32 , m = 64
for τ = 0.001 , τ = 0.005 , τ = 0.010.

Example 6.1. Consider the following linear stochastic Volterra-Fredholm integral
equation with time delay,

X(t) = 1 +

∫ T

0

s2X(s)ds

∫ t

0

s2X(s− τ)ds

+

∫ t

0

sX(s)dB(s), s, t ∈ [0, 1), τ ∈ (0, 0.5), (6.1)

where X(t) is an unknown stochastic processes. The numerical results of |X2m(t) −
Xm(t)| with m = 32 , m = 64 in three constant τ are shown in Table 1. The curves in
Figure 1 reresent a trajectory of the approximate solution computed by the presented
method.

Example 6.2. Consider the following linear stochastic Volterra-Fredholm integral
equation with time delay,

X(t) =
1

16
+

∫ T

0

(1 + cos(s))X(s)ds+

∫ t

0

(1− cos(s))X(s− τ)ds

+

∫ t

0

sin(s)X(s)dB(s), s, t ∈ [0, 1), τ ∈ (0, 0.5), (6.2)

where X(t) is an unknown stochastic processes. The numerical results of |X2m(t) −
Xm(t)| with m = 32 , m = 64 in three constant τ are shown in Table 2. The curves in
Figure 2 reresent a trajectory of the approximate solution computed by the presented
method.

Table 1: The values of |X2m(t) −Xm(t)| for Example 1 with m = 32 , m = 64 in three constant τ.

t τ = 0.001 τ = 0.005 τ = 0.010
m = 32 m = 64 m = 32 m = 64 m = 32 m = 64

0 2.127752E − 4 1.217680E − 3 2.316497E − 5 3.125784E − 5 6.215425E − 5 3.225236E − 5
0.1 3.692284E − 3 3.672124E − 4 1.021215E − 5 6.215423E − 5 1.212252E − 5 7.215147E − 5
0.2 1.29763E − 4 2.684928E − 5 7.548799E − 5 5.215424E − 5 3.262421E − 5 2.363696E − 5
0.3 2.561221E − 4 6.124578E − 4 2.132355E − 4 1.121114E − 4 3.000124E − 4 6.363535E − 4
0.4 7.754215E − 4 3.303101E − 4 9.001542E − 4 6.215425E − 4 2.045102E − 4 7.171717E − 4
0.5 1.246795E − 4 3.167965E − 4 2.012154E − 4 1.021542E − 4 6.325331E − 4 5.124512E − 4
0.6 2.454565E − 4 2.281297E − 4 6.215421E − 4 9.326523E − 4 3.215241E − 4 7.124974E − 4
0.7 2.111452E − 3 3.265178E − 3 1.374961E − 3 2.124512E − 3 7.112421E − 3 7.284756E − 3
0.8 3.746512E − 3 2.179435E − 3 7.578771E − 3 4.553333E − 3 2.575022E − 3 1.756863E − 3
0.9 5.377912E − 3 8.369636E − 3 3.278866E − 3 2.467333E − 3 2.011122E − 3 2.776888E − 3
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Table 2: The values of |X2m(t) −Xm(t)| for Example 2 with m = 32 , m = 64 in three constant τ.

t τ = 0.001 τ = 0.005 τ = 0.010
m = 32 m = 64 m = 32 m = 64 m = 32 m = 64

0 2.215175E − 4 2.151151E − 4 1.266544E − 4 3.126546E − 4 3.012256E − 4 2.756894E − 4
0.1 5.217551E − 4 6.025646E − 4 2.134656E − 4 5.23215E − 4 2.457561E − 4 2.756894E − 4
0.2 2.386974E − 4 3.265487E − 4 5.262622E − 4 5.124567E − 4 2.101275E − 4 5.437698E − 4
0.3 3.679411E − 3 6.232232E − 3 6.323265E − 3 2.011227E − 3 5.346734E − 3 2.357677E − 3
0.4 4.215478E − 3 6.200021E − 3 4.154816E − 3 8.267777E − 3 1.278398E − 3 2.467888E − 3
0.5 3.265855E − 3 2.352633E − 3 5.187694E − 3 5.623367E − 3 2.376866E − 3 1.276811E − 3
0.6 9.384625E − 3 4.124512E − 3 6.130512E − 3 2.021810E − 3 2.575689E − 3 7.353531E − 3
0.7 4.271564E − 3 3.268965E − 3 5.167899E − 3 8.055579E − 3 2.437857E − 3 2.018001E − 3
0.8 2.356258E − 3 5.242415E − 3 5.021219E − 3 2.011003E − 3 8.246877E − 3 3.045780E − 3
0.9 6.245105E − 3 3.022211E − 3 4.001215E − 3 3.021554E − 3 2.768988E − 3 6.487301E − 3

Figure 1. Trajectory of the approximate solution of Example 1 for
m = 32, m = 64 with τ = 0.005.

Figure 2. Trajectory of the approximate solution of Example 2 for
m = 32, m = 64 with τ = 0.005.
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Conclusion

Because of the structure of stochastic equations, closed-form solutions of many
important stochastic functional equations are virtually impossible to obtain. Thus,
numerical solutions are a viable alternative. Using piecewise constant orthogonal
functions as basis functions to solve the stochastic Volterra-Fredholm integral equa-
tions was very simple and effective in comparison with other methods. The main
advantage of the proposed method was to transform the main problem into linear
systems of algebraic equations which can be simply solved. Its applicability and ac-
curacy is checked on some examples. Moreover, the Ito-Taylor expansion described
by Kloeden and Platen [5], or generalized hat basis functions together with their sto-
chastic operational matrix of Ito-integration [10], has a lot of steps and complicated
computing.
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