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On the travelling wave solutions of Ostrovsky equation
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Abstract In this paper, extended trial equation method (ETEM) is applied to find exact
solutions of (1+1) dimensional nonlinear Ostrovsky equation. We constitute some
exact solutions such as soliton solutions, rational, Jacobi elliptic and hyperbolic
function solutions of this equation via ETEM. Then, we submit the results obtained
by using this method.
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1. Introduction

During the past years, travelling wave solutions are considerably important issue
in biophysics, geophysical sciences, chemical kinematics, optical fibers, technology of
space, electricity, elastic media and several topics in nonlinear sciences [1, 2, 3, 4, 5,
7, 11, 14, 15, 16, 21, 23]. Lately, some scholars have given several methods to supply
travelling wave solutions of NLEEs [6, 8, 17, 20]. In this study, ETEM [13] will be
performed to seek exact solutions of (1+1) dimensional nonlinear Ostrovsky equation.

We tackle (1+1) dimensional nonlinear Ostrovsky equation,
uuxxt − uxuxt + u2ut = 0. (1.1)

Eq. (1.1) is a model for weakly nonlinear surface and internal waves in a rotat-
ing ocean. It has been submitted by Vakhnenko and Parkers [18]. They have found
completely integrable of Eq. (1.1) by inverse scattering method [19]. Then, some au-
thors have used hyperbolic tangent method, exp-function method, (G’/G)-expansion
method, tanh-coth function method and Bernoulli Sub-ODE method to find travelling
wave solutions of this equation [9, 10, 12, 22, 24].
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The layout of this paper is organized as follows. In Sec. 2, we implement ETEM
to (1+1) dimensional nonlinear Ostrovsky equation. In Sec. 3, we report the results
that we obtained by using this method.

2. Application of ETEM to (1+1) Dimensional Nonlinear Ostrovsky
Equation

We get the transformation via the wave variables

u(x, t) = u(η), η = x− ct, (2.1)

where c is arbitrary constant.
Substituting Eq. (2.2) into Eq. (1.1),

ut = −cu′, ux = u′, uxt = −cu′′, uxxt = −cu′′′, (2.2)

we get following equation

3uu′′ − 3(u′)2 + u3 = 0. (2.3)

Get transformation and trial equation as following:

u =

δ∑
i=0

τiΓ
i, (2.4)

where

(Γ′)2 = Λ(Γ) =
ϕ(Γ)

ψ(Γ)
=
ξθΓ

θ + · · ·+ ξ1Γ + ξ0
ζϵΓϵ + · · ·+ ζ1Γ + ζ0

. (2.5)

Paying regard to Eq. (2.4) and Eq. (2.5), we can obtain

(u′)2 =
ϕ(Γ)

ψ(Γ)

(
δ∑

i=0

iτiΓ
i−1

)2

, (2.6)

u′′ =
ϕ′(Γ)ψ(Γ)− ϕ(Γ)ψ′(Γ)

2ψ2(Γ)

(
δ∑

i=0

iτiΓ
i−1

)
+
ϕ(Γ)

ψ(Γ)

(
δ∑
i

i(i− 1)τiΓ
i−2

)
,

(2.7)

where ϕ(Γ) and ψ(Γ) are polynomials. A relation of θ, ϵ and δ can be determined by
paying regard to balance principle.

Reduce Eq. (2.7) to

±(η − η0) =

∫
dΓ√
Λ(Γ)

=

∫ √
ψ(Γ)

ϕ(Γ)
dΓ. (2.8)

Using a complete discrimination system for polynomial to sort the roots of ϕ(Γ),
we unfasten Eq. (2.8) and divide the exact solutions to Eq. (1.1) by Mathematica.
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Setting Eq. (2.4) and Eq. (2.7) into Eq. (2.5), and paying regard to balance prin-
ciple, we find

θ = δ + ϵ+ 2. (2.9)

In attempt to get exact solutions of Eq. (1.1), if we pick ϵ = 0, δ = 1 and θ = 3 in
Eq. (2.9), then

(u′)2 =
τ21 (ξ0 + Γξ1 + Γ2ξ2 + Γ3ξ3)

ζ0
, u′′ =

τ1(ξ1 + 2Γξ2 + 3Γ2ξ3)

2ζ0
, (2.10)

where ξ4 ̸= 0, ζ0 ̸= 0. Solving the algebraic equation system (2.5) supplies

ξ1 = ξ1, ξ2 =
τ1(2ξ1τ0 − 3ξ0τ1)

τ20
, ξ3 =

τ21 (ξ1τ0 − 2ξ0τ1)

τ30

τ0 = τ0, τ1 = τ1, ζ0 = −3τ1(ξ1τ0 − 2ξ0τ1)

2τ30
.

(2.11)

Replacing these results into Eq. (2.5) and Eq. (2.8), we get

±(η − η0) = A

∫
dΓ√

ξ0
ξ3

+ ξ1
ξ3
Γ + ξ2

ξ3
Γ2 + Γ3

, (2.12)

where A =
√

−3
2τ1

.
Taking the integral of Eq. (2.12), we attain the solutions of Eq. (1.1) as following:

±(η − η0) = −2
√
A

1√
Γ− α1

, (2.13)

±(η − η0) = 2

√
A

α2 − α1
arctan

√
Γ− α2

α2 − α1
, α2 > α1, (2.14)

±(η − η0) =

√
A

α1 − α2
ln

∣∣∣∣√Γ− α2 −
√
α1 − α2√

Γ− α2 +
√
α1 − α2

∣∣∣∣ , α1 > α2, (2.15)

±(η − η0) = 2

√
A

α1 − α3
F (φ, l), α1 > α2 > α3, (2.16)

where

F (φ, l) =

∫ φ

0

dψ√
1− l2 sin2 ψ

,φ = arcsin

√
Γ− α3

α2 − α3
, l2 =

α2 − α3

α1 − α3
. (2.17)

Also, α1, α2 and α3 are the roots of the following equation

Γ3 +
ξ2
ξ3

Γ2 +
ξ1
ξ3

Γ +
ξ0
ξ3

= 0. (2.18)
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Inserting the solutions (2.13), (2.14), (2.15) and (2.16) into (2.4) by the help of
Eq.(2.1), we can find rational function solution of Eq. (1.1)

u(x, t) = τ0 + τ1α1 +
4τ1A

(x− ct− η0)2
, (2.19)

hyperbolic function solutions,

u(x, t) = τ0 + τ1α1 + τ1(α2 − α1) tanh
2

(
1

2

√
α1 − α2

A
(x− ct− η0)

)
, (2.20)

u(x, t) = τ0 + τ1α1 + τ1(α1 − α2)csch
2

(
1

2

√
α1 − α2

A
(x− ct− η0)

)
, (2.21)

and Jacobi elliptic function solutions

u(x, t) = τ0 + τ1α3 + τ1(α2 − α3)sn
2

(
∓1

2

√
α1 − α3

A
(x− ct− η0),

α2 − α3

α1 − α3

)
.

(2.22)
If we take τ0 = −τ1α1 and η0 = 0 , then the solutions (2.19), (2.20) and (2.21) can
be reduced to rational function solution

u(x, t) =

(
2
√
Ã

x− ct

)2

, (2.23)

1-soliton solution

u(x, t) =
A1

cosh2 [B(x− ct)]
, (2.24)

and singular soliton solution

u(x, t) =
A2

sinh2 [B(x− ct)]
, (2.25)

where Ã = τ1A,A1 = τ1(α2 −α1), A2 = τ1(α1 −α2), B = 1
2

√
α1−α2

A . Here, A1 and A2

remark the amplitudes of the solitons, while c describes the velocity and B defines
the inverse width of the solitons. So, it can be said that the solitons exist for τ1 > 0.
Also, when we take τ0 = −τ1α3 and η0 = 0 , Eq.(2.22) can be reduced to

ui(x, t) = A3sn
2

(
Bi(x− ct),

α2 − α3

α1 − α3

)
, (2.26)

where A3 = τ1(α2 − α3) and Bi =
(−1)i

2

√
α1−α3

A , (i = 1, 2).

Remark When l → 1, the solution (2.26) can be demeaned to dark soliton solutions
ui(x, t) = A3 tanh

2 [Bi(x− ct)] , (2.27)
where α1 = α2 , and c identifies the velocity of the dark soliton.
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Figure 1. Graph of Eq. (2.23) for τ1 = 3, c = 1, −55 < x <
55,−1 < t < 1 and t = 1 for 2D surface.
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Figure 2. Graph of Eq. (2.24) for α1 = 1, α2 = 2, τ1 = 2, c =
4,−45 < x < 45,−1 < t < 1 and t = 1 for 2D surface.
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3. Physical Explanations of the Solutions

In this paper, we obtained the solutions of rational function solutions, soliton so-
lution, Jacobi elliptic function solution and hyperbolic function solution of (1+1) di-
mensional nonlinear Ostrovsky equation by using ETEM. Particularly, Jacobi elliptic
function solutions are of substantial applications of periodic meromorphic functions.
There are a lot of examples of these functions in the applied sciences such as fluid
dynamics, optical fibers, electromagnetic theory, special relativity and heat transfer
in several fields of physics. These solutions give to us several aspects of the solutions
of NLEEs. By these solutions, we contributed some novel solutions. Also, we plot
2D and 3D surfaces of some solutions, which show the vitality of solutions with ap-
propriate parameters. Numerical results together with the graphical demonstrations
clearly present the reliability of this method.
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Figure 3. Graph of Eq. (2.25) for α1 = 2, α2 = 5, τ1 = 1, c =
3,−35 < x < 35,−1 < t < 1 and t = 1 for 2D surface.
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4. Results and Discussions

We illustrate accuracy and efficiency of ETEM by implementing the method to
(1+1) dimensional nonlinear Ostrovsky equation. For this goal, we check the results
via Wolfram Mathematica 9. Also, The graphical display shows validness of proposed
method. When we compare with the exact solutions of Eq.(1.1) reported by the other
authors, our solution (2.24) is the similar solution with the solution (4.15) in [22] and
the solution (73) in [24]. Also, our solution (2.25) is the similar solution with the
solution (71) in [24]. According to us, other solutions of Eq. (1.1) are novel and are
not represented before.

5. Conclusion

In this work, we find travelling wave solutions of (1+1) dimensional nonlinear
Ostrovsky equation by using ETEM. It is necessary to note that ETEM supplies
powerful mathematical devices for finding the analytical solutions of this equation
and this method is highly efficient in the way of finding new exact solutions.
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