تعداد نشریات | 44 |
تعداد شمارهها | 1,293 |
تعداد مقالات | 15,841 |
تعداد مشاهده مقاله | 52,073,381 |
تعداد دریافت فایل اصل مقاله | 14,859,395 |
مطالعه عددی تاثیر قطر و تعداد پره ایمپلر پمپهای نفتی غوطهور درون چاهی بر عملکرد پمپ | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 5، دوره 50، شماره 3 - شماره پیاپی 92، آبان 1399، صفحه 31-40 اصل مقاله (3.39 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2020.10481 | ||
نویسندگان | ||
مهدی حسینی پرست1؛ صالح فلاح1؛ بهزاد قدیری دهکردی* 2 | ||
1دانشگاه تربیت مدرس | ||
2استادیار دانشگاه تربیت مدرس | ||
چکیده | ||
پمپهای گریز از مرکز در صنایع مختلف بهویژه صنایع نفتی کاربرد فراوان دارند. از این رو بررسی الگوی جریان درون پمپ و تغییر رفتار جریان ناشی از تغییرات هندسی پمپ بهمنظوره بهبود طراحی از اهمیت زیادی برخوردار است. در این مقاله، جریان سهبعدی در پمپ ESP که یک پمپ گریز از مرکز غوطهور درون چاهی میباشد شبیهسازی عددی شده و اثر قطر و تعداد پره ایمپلر بر عملکرد آن ارزیابی شده است. برای مدلسازی حرکت نسبی ایمپلر و دیفیوزر از روش قابهای مرجع چندگانه و برای ارتباط میان آنها از رابط روتور ایستا بهره گرفته شده است. نتایج این تحقیق نشان میدهند که با افزایش قطر ایمپلر هد پمپ افزایش یافته و راندمان کاهش مییابد و کاهش قطر اثر معکوس دارد. تغییرات بوجود آمده با افزایش و کاهش قطر به ترتیب به دلیل تغییر در زاویه خروجی جریان و افزایش تلفات اصطکاکی مرتبط میباشند. همچنین، نتایج نشان دادند که افزایش تعداد پره ایمپلر باعث افزایش هد و کاهش راندمان میگردد. این تغییرات درنتیجه افزایش سطوح انتقال انرژی به سیال و همچنین افزایش تلفات اصطکاکی رخ داده است. | ||
کلیدواژهها | ||
"پمپ ای.اس.پی."؛ "پمپ نفتی"؛ "ایمپلر"؛ "هد"؛ "راندمان" | ||
مراجع | ||
[1] Takacs G., Electrical Submersible Pump Manual, Design, Operations and Maintenance: Access Online Via Elsevier 2009, http://www.glossary.connect.slb.com
[2] Gugau M., Transient impeller volute interaction in a centrifugal pump, fg TurboMachine and Fluidantribstechnik, Vol. 30, No. 6, pp. 42-47, 2003.
[3] Zhou W., Zhao Z., lee T. S.,Winoto S. H., Investigation of flow through centrifugal pump impellers using computational fluid dynamics, The International Journal of Rotating Machinery, Vol. 9, No. 5, pp. 49-61, 2003.
[4] Gölcü M., Pancar Y., Sekmen Y., Energy saving in a deep well pump with splitter blade, Energy Conversation and Management, Vol. 47, No. 5, pp. 638-651, 2006.
[5] Chea K., Lee T. S., Winoto S. H., Numerical flow simulation in a centrifugal pump at design and off design condition, The International Journal of Rotating Machinery, Vol. 35, No. 10, pp. 98-105, 2007.
[6] Zoljanahi M. A., Zirak S., Numerical simulation of fluid flow in a centrifugel pump at design point and off-designe condition, Modares Mechanical Engineering, Vol. 16, No. 12, pp. 88-98, 2016.
[7] Bacharouids E. C., Filios A. E., Mentzos M. D., Margaris D. P., Parametric study of a centrifugal pump impeller by varying the outlet blade angle, The Open Mechanics Engineering Journal, Vol. 2, No. 1, pp. 75-83, 2008.
[8] Nataraj M., Ragoth singh R., Analayzing pump impeller for performance evaluation using RSM and CFD, Desalination and water Treatment, Vol.52, No. 34-36, pp. 6822-6831, 2014.
[9] Maitelli C. W. S., Bezarra V. M., Mata W., Simulation of flow in a centrifugal pump of esp system using computational fluid dynamics, Brazilian Journal of Petroleum and Gas, Vol. 4, No. 1, pp. 1-9, 2010.
[10] Alemi H., Nourbakhsh S. A., Raisee M., Najafi A. F., Effect of volute curvature on performance of low specific-speed centrifugal pump at design and off design condition, Journal of Turbo machinery, Vol. 137, No. 4, pp. 9-19, 2015.
[11] Walk A., Hydraulic efficiencies of impeller and pump obtained by means of theoretical calculations and laboratory measurement for high speed impeller pump with open flow impeller with radial blades, The International Journal of Machines, Vol. 4, No. 2, pp. 35-41, 2010.
[12] Shojaeefard M. H., Tahani M., Ehghaghi M. B., Numerical study of the effects of some geometrics characteristic of a centrifugal pump impeller that pumps a viscous fluid, Computers & Fluids, Vol. 60, No. 1, pp. 61-70, 2012.
[13] Li W. G., Impeller trimming of an industrial centrigugel viscouse oil pump, International Journal of Advanced Design and Manufacturing Technology, Vol. 5, No. 1, pp. 1-10, 2012.
[14] Ehghaghi M. B., Kuzegar Ghiyasi K., Vajdi M., Study of the Effect of Blade Numbers on Centrifugal Pump Performance, Journal of Mechanical engineering of Tabriz University, Vol. 48, No. 4, pp. 36-49, 2018.
[15] Anagnostopoulos S. J., A fast numerical method for flow analysis and blade design in centrifugal pump impellers, Computer & Fluids, Vol. 38, p.p. 284-289, 2009.
[16] Shojaeefard M. H., Tahani M., Khalkhali A., Ehghaghi M. B., Fallah H., Beglari M., A parametric study for improving the centrifugal pump impeller for use in viscous fluid pumping, Heat and Mass Transfer, Vol. 49, No. 2, pp. 197-206, 2013.
[17] Menter F. R., Two-Equations Eddy-Viscosity Turbulence Models For Engineering Applications, Vol. 32, No. 3, pp. 605-620, 1994.
[18] Behery E. l., Hamed S. M., Comparative study of turbulence models performance foe separating flow in a planar asymmetric diffuser, Compute Fluids, Vol. 1, No. 44, pp. 48-57, 2011.
[19] Shojaeefard M. H., Tahani M., Ehghaghi M. B., Fallah H., Beglari M., Numerical and Experimental Investigation of Impller Geometry Effect on The Centrifugel Pump Performance during Oil Pumping, Journal oh Mechanical Eng., Vol. 14, No.1, S.N 63, 2012.
[20] White F.M., Fluid Mechanics, 7th edition, New York: McGraw-Hill, 1994.
[21] REDA Electric Submersible Pump Technology, ESP Cataloge, pp. 208-209, 2007. | ||
آمار تعداد مشاهده مقاله: 297 تعداد دریافت فایل اصل مقاله: 398 |