تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,453 |
تعداد دریافت فایل اصل مقاله | 15,214,279 |
مطالعه تجربی تاثیر پارامترهای هندسی و سیالاتی بر اندازه ریزقطرات در دستگاههای ریزسیالاتی با هندسهی تمرکز جریانی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 4، دوره 50، شماره 3 - شماره پیاپی 92، آبان 1399، صفحه 25-30 اصل مقاله (2.14 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2020.10480 | ||
نویسندگان | ||
محمدرضا چیمه راد1؛ ساسان آسیایی2؛ حسام مقدسی1؛ فاطمه قربانی بیدکرپه* 3 | ||
1دانشکده مهندسی مکانیک ، دانشگاه علم و صنعت ایران، تهران | ||
2دانشکده مهندسی مکانیک ، دانشگاه علم و صنعت ایران، تهران، ایران | ||
3دانشکده داروسازی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران | ||
چکیده | ||
یکی از مهمترین چالشهای داروسازان، عدم توانایی در تولید حاملهای دارویی با دقت و کنترل بالا در تعداد مشخص میباشد، از این رو تولید ذرات دارویی برپایهی دستگاههای ریزسیالاتی به عنوان وسیلهای تطبیقپذیر با طیف گستردهای از کاربردها مورد استفاده میباشد. در این پژوهش هدف، تولید ریزقطرات به عنوان پایهای برای حاملهای دارورسانی، به کمک دستگاههای ریزسیالاتی با هندسهی تمرکز جریانی میباشد، همچنین، تأثیر پارامترهای هندسی، مکانیکی و مشخصههای سیال بر قطر ریزقطرات تولیدی، (با استفاده از دو نوع مادهی پارافین روغنی و هگزادکان بهصورت جداگانه به عنوان سیال فاز پیوسته و آب به عنوان سیال گسسته) بهصورت تجربی مورد ارزیابی قرار گرفته شده است. نتایج نشان دادند که با افزایش زاویهی بین مجرای اصلی و فرعی و افزایش عرض مجراها قطر ریزقطرات به ترتیب به صورت نمایی و نسبتاً خطی افزایش یافته و در مقابل با کاهش نسبت لزجت به کشش سطحی سیال، قطر ریزقطرات تولیدی بهصورت نسبتاً خطی کاهش مییابد. بهعلاوه در تمامی بررسیها هنگام تغییر رژیم تشکیل ریزقطره جهش در تغییرات اتفاق میافتد و شاهد افزایش نرخ جریان فاز پیوسته وکاهش قطر ریزقطرات تولیدی هستیم. | ||
کلیدواژهها | ||
ریزسیالات؛ مطالعه تجربی؛ ریزقطره؛ پارامترهای هندسی؛ مشخصههای سیال | ||
مراجع | ||
[1] Zhang Y., Liu D., Zhang H. and Santos H.A., Microfluidic mixing and devices for preparing nanoparticulate drug delivery systems. Microfluidics for Pharmaceutical Applications, pp. 155-177, 2019. [2] Lee T.Y., Choi T.M., Shim T.S., Frijns R.A. and Kim S.H., Microfluidic production of multiple emulsions and functional microcapsules. Lab on a Chip, 16(18), pp.3415-3440, 2016. [3] Alam M.K., Emmanuel K., Heng Z., Changqing Y., Cheuk-Wing L., Tao X. and Mengsu Y., Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Analytica chimica acta, 2018. [4] Cui P. and Wang S., Applications of microfluidic chip technology in pharmaceutical analysis: A review. Journal of Pharmaceutical Analysis, 2018. [5] Yang R.J., Fu L.M. and Hou H.H., Review and perspectives on microfluidic flow cytometers. Sensors and Actuators B: Chemical, 266, pp.26-45, 2018. [6] Anna S.L., Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 48, pp.285-309, 2016. [7] Gupta A., Matharoo H.S., Makkar D. and Kumar R., Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Computers & Fluids, 100, pp.218-226, 2014. [8] Thorsen T., Roberts R.W., Arnold F.H. and Quake S.R., Dynamic pattern formation in a vesicle-generating microfluidic device. Physical review letters, 86(18), p.4163, 2001. [9] Teh S.Y., Lin R., Hung L.H. and Lee A.P., Droplet microfluidics. Lab on a Chip, 8(2), pp.198-220, 2008. [10] Zhu P. and Wang L., Passive and active droplet generation with microfluidics: a review. Lab on a Chip, 17(1), pp.34-75, 2017. [11] Tice J.D., Ismagilov R.F. and Zheng B., August. Forming droplets in microfluidic channels with alternating composition and application to indexing concentrations in droplet-based assays. Anal. Chem, vol. 76, no. 17, pp. 4977–4982, 2004. [12] Umbanhowar P.B., Prasad V. and Weitz D.A., Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir, 16(2), pp.347-351, 2000. [13] Utada A.S., Chu L.Y., Fernandez-Nieves A., Link D.R., Holtze C. and Weitz D.A., Dripping, jetting, drops, and wetting: The magic of microfluidics. Mrs Bulletin, 32(9), pp.702-708, 2007. [14] Gañán-Calvo A.M., Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Physical Review Letters, 80(2), p.285, 1998. [15] Hein M., Fleury J.B. and Seemann R., Coexistence of different droplet generating instabilities: new breakup regimes of a liquid filament. Soft Matter, 11(26), pp.5246-5252, 2015. [16] Yasuda M., Goda T., Ogino H., Glomm W.R. and Takayanagi H., Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor. Journal of colloid and interface science, 349(1), pp.392-401, 2010. [17] Anna S.L., Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 48, pp.285-309, 2016. [18] Cristini V. and Tan Y.C., Theory and numerical simulation of droplet dynamics in complex flows—a review. Lab on a Chip, 4(4), pp.257-264, 2004. [19] Abate A.R. and Weitz D.A., High‐order multiple emulsions formed in poly (dimethylsiloxane) microfluidics. Small, 5(18), pp.2030-2032, 2009. [20] Utada A.S., Lorenceau E.L., Link D.R., Kaplan P.D., Stone H.A. and Weitz D.A., Monodisperse double emulsions generated from a microcapillary device. Science, 308(5721), pp.537-541, 2005. [21] Seo M., Paquet C., Nie Z., Xu S. and Kumacheva E., Microfluidic consecutive flow-focusing droplet generators. Soft Matter, 3(8), pp.986-992, 2007. [22] Chu L.Y., Utada A.S., Shah R.K., Kim J.W. and Weitz D.A., Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 46(47), pp.8970-8974, 2007. [23] Panizza P., Engl W., Hany C. and Backov R., Controlled production of hierarchically organized large emulsions and particles using assemblies on line of co-axial flow devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(1), pp.24-31, 2008. [24] Utada A.S., Fernandez-Nieves A., Stone H.A. and Weitz D.A., Dripping to jetting transitions in coflowing liquid streams. Physical review letters, 99(9), p.094502, 2007. [25] Collins R.T., Jones J.J., Harris M.T. and Basaran O.A., Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nature Physics, 4(2), p.149, 2008. [26] Xu J.H., Li S.W., Tan J. and Luo G.S., Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluidics and Nanofluidics, 5(6), pp.711-717, 2008. [27] Romero P.A. and Abate A.R., Flow focusing geometry generates droplets through a plug and squeeze mechanism. Lab on a Chip, 12(24), pp.5130-5132, 2012. [28] De Menech M., Garstecki P., Jousse F. and Stone H.A., Transition from squeezing to dripping in a microfluidic T-shaped junction. journal of fluid mechanics, 595, pp.141-161, 2008. [29] Abate A.R., Mary P., van Steijn V. and Weitz D.A., Experimental validation of plugging during drop formation in a T-junction. Lab on a Chip, 12(8), pp.1516-1521, 2012. | ||
آمار تعداد مشاهده مقاله: 294 تعداد دریافت فایل اصل مقاله: 209 |