تعداد نشریات | 43 |
تعداد شمارهها | 1,266 |
تعداد مقالات | 15,616 |
تعداد مشاهده مقاله | 51,619,051 |
تعداد دریافت فایل اصل مقاله | 14,546,554 |
پردازش تصویر بیندامنهای با استفاده از تحلیل تفکیک خطی فیشر و واگرایی برگمن | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 22، دوره 49، شماره 4 - شماره پیاپی 90، اسفند 1398، صفحه 1681-1696 اصل مقاله (2.74 M) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
مژده زندی فر؛ جعفر طهمورث نژاد* | ||
دانشکده مهندسی فناوری اطلاعات و کامپیوتر - دانشگاه صنعتی ارومیه | ||
چکیده | ||
پردازش تصویر روشی برای اعمال برخی عملیاتها برروی تصویر، برای بهدستآوردن تصاویری با کیفیت بالاتر یا استخراج برخی اطلاعات مفید میباشد. الگوریتمهای سنتی پردازش تصویر در شرایطیکه تصاویر آموزشی (دامنه منبع) که برای یاددهی مدل استفاده میشوند توزیع متفاوتی از تصاویر آزمایشی (دامنه هدف) داشته، نمیتوانند عملکرد خوبی داشته. درواقع، وجود اختلاف توزیع شرطی بین دامنههای منبع و هدف، بازدهی مدل را کاهش میدهد. تطبیق دامنه و یادگیری انتقالی راهحلهای امیدبخشی هستند که هدف آنها تعمیمدادن یک مدل یادگیری بین دادههای آموزشی و تست با توزیعهای متفاوت است. در این مقاله، مسئله پردازش تصویر بیندامنهای بدوننظارت مورد توجه قرار گرفته است که هیچ برچسبی برای دادههای تست در دسترس نمیباشد. درواقع، روش پیشنهادی دامنههای منبع و هدف را به یک زیرفضای کمبعد مشترک براساس FLDA بهصورت بدوننظارت منتقل میکند. روش پیشنهادی ما، اختلاف احتمال توزیع شرطی در دادههای منبع و هدف را ازطریق واگرایی برگمن حداقل میکند. یک ماتریس نگاشت بهدست میآید که دادههای منبع و هدف را به یک زیرفضای مشترک انتقال میدهد که در آن فضا ماتریس پراکندگی بینکلاسی حداکثر شده و ماتریس پراکندگی درونکلاسی و توزیعهای بیندامنهای حداقل میشود. آزمایشات متنوع برروی 58 عملیات طبقهبندی بیندامنهای برروی شش پایگاهداده همگانی نشان میدهد که روش پیشنهادی ما بهتر از روشهای پردازش تصویر جدید ارائهشده در حوزه بیندامنهای عمل میکند. | ||
کلیدواژهها | ||
پردازش تصویر؛ یادگیری انتقالی؛ واگرایی برگمن؛ کاهش اختلاف توزیع شرطی؛ کاهش ابعاد | ||
مراجع | ||
[1] B. Gong, K. Grauman and F. Sha, “Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation”, Proceedings of the International Conference on Machine Learning, vol. 28, no. 1, pp. 222-230, 2013. [2] H. Wang, H. Huang, F. Nie, and C. Ding, “Cross-language web page classification via dual knowledge transfer using nonnegative matrix tri-factorization,” in Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pp. 933–942, ACM, 2011. [3] J. Tahmoresnezhad and S. Hashemi, “Diret: An effective discriminative dimensionality reduction approach for multi source transfer learning,” Scientia Iranica. Transaction D, Computer Science & Engineering, Electrical, vol. 24, no. 3, pp. 1303–1311, 2017. [4] H. Liu and L. Yu, “Toward integrating feature selection algorithms for classification and clustering,” IEEE Transactions on knowledge and data engineering, vol. 17, no. 4, pp. 491502, 2005. [5] I. K. Fodor, “A survey of dimension reduction techniques,” Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, vol. 9, pp. 1–18, 2002. [6] L. M. Bregman, “The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming,” USSR computational mathematics and mathematical physics, vol. 7, no. 3, pp. 200–217, 1967. [7] مهرداد حیدری ارجلو، سید قدرتاله سیف السادات ومرتضی رزاز، «روش هوشمند تشخیص جزیره در شبکه توزیع دارای تولیدات پراکنده مبتنی بر تبدیل موجک و نزدیکترین k-همسایگی (kNN)»، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 1، صفحات 15-26، 1392. [8] M. Singha, D. Deb, and S. Roy, “Hybrid feature extraction method for partial face recognition,” Int. J. Emerg. Technol. Adv. Eng. Website, vol. 4, pp. 308–312, 2014. [9] Saenko K, Kulis B, Fritz M, Darrell T. Adapting visual category models to new domains. Computer Vision–ECCV 2010. 2010:213-26. [10] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,” in European conference on computer vision, pp. 213–226, Springer, 2010. [11] M. Long, J. Wang, G. Ding, J. Sun and P. S. Yu, “Transfer joint matching for unsupervised domain adaptation”, IEEE conference on computer vision and pattern recognition, pp. 1410-1417, 2014. [12] J. Tahmoresnezhad and S. Hashemi, “Visual domain adaptation via transfer feature learning,” Knowledge and Information Systems, vol. 50, no. 2, pp. 585– 605, 2017. [13] M. Long, J. Wang, G. Ding, S. J. Pan and P. Yu, “Adaptation regularization: a general framework for transfer learning”, IEEE Trans. Knowl. Data Eng, vol. 26, pp. 1076–1089, 2013. [14] Y. Aytar and A. Zisserman, “Tabula rasa: Model transfer for object category detection,” in Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 2252–2259, IEEE, 2011. [15] G.Griffin, A. Holub and P. Perona, “Caltech-256 object category dataset”, Technical Report7694, 2007. [16] J. J. Hull, “A database for handwritten text recognition research”, IEEE Trans. Pattern Anal. Mach. Intell, vol. 16, no. 5, pp. 550–554, 1994. [17] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied to document recognition”, Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. [18] T. Sim, S. Baker and M. Bsat, “The CMU pose, illumination, and expression (PIE) database”, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, pp. 53-58, 2002. [19] S. Si, D. Tao, and B. Geng, “Bregman divergence-based regularization for transfer subspace learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 7, p. 929, 2010. [20] L. Duan, D. Xu, and I. W.-H. Tsang, “Domain adaptation from multiple sources: A domaindependent regularization approach,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 3, pp. 504–518, 2012. [21] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via transfer component analysis,” IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 199–210, 2011. [22] M. Long, J. Wang, G. Ding, J. Sun and S. YuPhilip, “Transfer feature learning with joint distribution adaptation”, IEEE international conference on computer vision, pp. 2200-2207, 2013. [23] Y. Xu, X. Fang, J. Wu, X. Li, and D. Zhang, “Discriminative transfer subspace learning via low-rank and sparse representation,” IEEE Transactions on Image Processing, vol. 25, no. 2, pp. 850–863, 2016. [24] طاهره زارع بیدکی و محمدتقی صادقی، «بهینهسازی وزنها در کرنل مرکب برای طبقهبند مبتنی بر نمایش تنک کرنلی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 1059-1072، 1396. [25] L. Luo, X. Wang, S. Hu, C. Wang, Y. Tang, and L. Chen, “Close yet distinctive domain adaptation,” IEEE Transactions on Image Processing, vol. 25, no. 2, pp. 850–863, 2017. | ||
آمار تعداد مشاهده مقاله: 422 تعداد دریافت فایل اصل مقاله: 296 |