
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 9, No. 2, 2021, pp. 347-357

DOI:10.22034/cmde.2020.30733.1459

Necessary and sufficient conditions for M-stationarity of nonsmooth
optimization problems with vanishing constraints

Hadis Mokhtavayi∗
Department of Mathematics,
Payam Noor University, P. O. Box 19395-3697, Tehran, Iran.
E-mail: hadismokhtavay@yahoo.com

Aghileh Heydari
Department of Mathematics,
Payam Noor University, P. O. Box 19395-3697, Tehran, Iran.
E-mail: a heidari@pnu.ac.ir

Nader Kanzi
Department of Mathematics,
Payam Noor University, P. O. Box 19395-3697, Tehran, Iran.
E-mail: nad.kanzi@gmail.com

Abstract We consider a nonsmooth optimization problem with a feasible set defined by van-
ishing constraints. First, we introduce a constraint qualification for the problem,

named NNAMCQ. Then, NNAMCQ is applied to obtain a necessary M-stationary

condition. Finally, we present a sufficient condition for M-stationarity, under gener-
alized convexity assumption. Our results are formulated in terms of Mordukhovich

subdifferential.
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1. Introduction

Kanzow and his coauthors in 2007 [1, 8] have been introduced a very complicated
group of optimization problems, which was named ”Mathematical programming with
vanishing constraints” (MPVC in brief). They formulized the problem as

min u(x)

s.t. vα(x) ≤ 0 α ∈ ∆,

wβ(x) = 0 β ∈ Ω,

pγ(x) ≥ 0, γ ∈ Γ,

pγ(x)qγ(x) ≤ 0, γ ∈ Γ,

in which the functions u, vα, wβ , pγ , qγ are continuously differentiable from Rn to
R, and index sets ∆, Ω, Γ are finite.
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As we know, the product function pγqγ is not usually convex, even when pγ and
qγ are convex. Consequently, the feasible set of MPVC is not convex and unlike the
convex sets, has several normal cones; for instance, Frechet, Clark, and Proximal
normal cones (see, e.g. [13]). These normal cones are applied for presenting several
stationary conditions. One of the most important normal cones for a nonconvex set
is its Mordukhovich normal cone. M-stationary condition is a stationary condition
that is based on Mordukhovich normal cone. This kind of stationary condition for
MPVCs is studied in [6, 7]. Our first aim is to consider the MPVCs with nonsmooth
functions, and to provide M-stationary condition for its optimal solution.To the best
of our knowledge, there is no reference that studies nonsmooth MPVCs. Since the
inequality constraints vα(x) ≤ 0 and equality constraints wβ(x) = 0 do not add to the
complexity of the problem and just prolong the formulas, we ignore them and only
deal with the following problem:

(P ) min f(x)

s.t. Hi(x) ≥ 0, i ∈ I := {1, ...,m},
Gi(x)Hi(x) ≤ 0, i ∈ I,

where f,Hi, Gi : Rn −→ R (for i ∈ I) are locally Lipschitz functions. Another prob-
lem which is similar to (P ) is the following mathematical problem with equilibrium
constraints (briefly, MPEC):

(P ∗) min f(x)

s.t. Hi(x) ≥ 0, Gi(x) ≥ 0, i ∈ I,
Gi(x)Hi(x) = 0, i ∈ I.

Movahedian and Nobakhtian [11] presented a M-stationary condition for optimal so-
lution of nonsmooth MPEC. For extension of their result to (P ), we need to introduce
a suitable constraint qualification (CQ in short). We will discuss this in section 3.
Our next aim is to show that the necessary M-stationarity is also sufficient under
certain convexity assumptions.

The structure of subsequent sections of this paper is as follows: in section 2, we
present the definitions, theorems and relations of non-smooth analysis. In section 3,
we introduce a CQ for (P ), named NNAMCQ. Also, M-stationary necessary condition
is provided in section 3. Section 4 contains an important sufficient M-stationary
condition for optimal solution.

2. Notations and preliminaries

In this section we present some preliminary results on nonsmooth analysis from
[13]. We assume ϕ : Rp → R is a locally Lipschitz function, and x0 ∈ Rp.

The set

∂∗ϕ(x0) :=
{
ξ ∈ Rn | lim inf

x→x0

ϕ(x)− ϕ(x0)−
〈
ξ, x− x0

〉
‖x− x0‖

≥ 0
}
,
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is called the Fréchet subdifferential of ϕ at x0. The Mordukhovich (or limiting, or
basic) subdifferential of ϕ at x0 is defined as

∂ϕ(x0) := lim sup
x→x0

∂∗ϕ(x).

We observe that for two locally Lipschitz functions ϕ1 and ϕ2 from Rp to R, and
for two arbitrary real numbers α and β, the following subadditive formula holds:

∂
(
αϕ1 + βϕ2

)
(x0) ⊆ α∂ϕ1(x0) + β∂ϕ2(x0). (2.1)

Notice that the subdifferential ∂ϕ(x0) is always a compact (not necessarily convex)
subset of Rp. Also, always one has

∂
(
− ϕ

)
(x0) ⊆ −∂ϕ(x0). (2.2)

The following theorem is useful in what follows.

Theorem 1. [13] If x0 is a local minimizer of ϕ on Rp, then one has 0 ∈ ∂ϕ(x0).

Recall also that the normal cone of a closed subset A ⊆ Rp at x0 ∈ A is defined
by N(A, x0) := ∂ΘA(x0), where ΘA(.) denotes the indicator function of A, i.e.,
ΘA(x) := 0 for x ∈ A, and ΘA(x) := +∞ otherwise.

Let M : Rr ⇒ Rs be a set-valued function, and

(y, x) ∈ GphM := {(y, x) ∈ Rr × Rs | x ∈M(y)}.

We say that M is calm at (y, x) if there exist some L > 0 and neighborhoods X and
Y around x and y, respectively, such that

dM(y)(x) ≤ L‖y − y‖, ∀y ∈ Y, ∀x ∈ X ∩M(y),

where, dB(a) := inf
b∈B
‖a − b‖ denotes the point-to-set distance between a ∈ Rs to

B ⊆ Rs induced by the standard norm ‖.‖ on Rs.
Also, we associate Mordukhovich coderivative to M as D∗M(y, x) : Rs ⇒ Rr defined
by

D∗M(y, x)(x∗) := {y∗ ∈ Rr | (y∗,−x∗) ∈ N(GphM, (y, x))}.

If M is single-valued, we simply write D∗M(y) instead of D∗M(y;Mx). For single-
valued locally Lipschitz function h, it holds as

D∗h(y)(x∗) = ∂M 〈x∗, h〉(y), (2.3)

where
〈x∗, h〉(y) :=

∑s
k=1 x

∗
khk(y) for x∗ = (x∗1, . . . , x

∗
s) and h(y) = (h1(y), . . . , hs(y)).

Suppose that the set-valued mapping M̃ : Rl ⇒ Rk is defined as

M̃(y) := {x ∈ C̃ | g̃(x) + y ∈ Ẽ}, (2.4)

where the function g̃ : Rk → Rl is locally Lipschitz and (C̃, Ẽ) ⊆ Rk × Rl is closed.
The following important theorem will be used in sequel.
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Theorem 2. [5, Theorem 4.1] Consider the multifunction M̃ given by (2.4) and a

pair (0, x) ∈ GphM̃ . If M̃ is calm at (0, x), then

N
(
M̃(0), x

)
⊆

⋃
y∗∈N(Ẽ,g̃(x))

D∗g̃(x)(y∗) +N(C̃, x).

3. Necessary Condition

At the beginning of this section, we denote the feasible set of (P ) by S, i.e.,

S := {x ∈ Rn | Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i ∈ I}.

Throughout this paper, we fix a feasible set x̂ ∈ S. Also, we consider following index
sets, depending to x̂:

I+0 := {i ∈ I | Hi(x̂) > 0, Gi(x̂) = 0},
I+− := {i ∈ I | Hi(x̂) > 0, Gi(x̂) < 0},
I0+ := {i ∈ I | Hi(x̂) = 0, Gi(x̂) > 0},
I00 := {i ∈ I | Hi(x̂) = 0, Gi(x̂) = 0},
I0− := {i ∈ I | Hi(x̂) = 0, Gi(x̂) < 0}.

Obviously, we can write I as I = I0 ∪ I+ in which I+ := I+0 ∪ I+− and I0 :=
I0+ ∪ I00 ∪ I0−.

Now, we introduce a mention that plays a key role in this paper. The mention of
M-stationary point for smooth MPVC is introduced in [6, 7]. Here, we introduce a
nonsmooth version of M-stationary point.

Definition 1. The feasible point x̂ is said to be M-stationary point for (P ) when
there exists a vector µ := (µG1 , µ

H
1 , . . . , µ

G
m, µ

H
m) ∈ R2m such that

0 ∈ ∂f(x̂) +

m∑
i=1

[
µGi ∂Gi(x̂)− µHi ∂Hi(x̂)

]
, (3.1)

µGi ≥ 0, i ∈ I00 ∪ I+0; µGi = 0, i ∈ I0+ ∪ I0− ∪ I+0, (3.2)

µHi free, i ∈ I00 ∪ I0+; µHi ≥ 0, i ∈ I0−; µHi = 0, i ∈ I+, (3.3)

µHi µ
G
i = 0, i ∈ I00. (3.4)

It is worth mentioning that the above definition extends the nonsmooth M-stationarity
which is presented in [11] for nonsmooth MPECs.

For simplicity in writing, we rearrange the constraints of problem (P ) such that
the constraints with index i ∈ I00 are first written, then the constraints with index
i ∈ I0+, then i ∈ I0−, then i ∈ I+0, and finally i ∈ I+−. We keep this order throughout
this paper. Also, we assume that

Ψ(x) :=
(
G1(x), H1(x), . . . , Gm(x), Hm(x)

)
.
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Now, we consider the following parameterized problem which is parameterized with
respect to y ∈ R2m:

P̂ (y) : min f(x)

s.t. Ψ(x) + y ∈ D

x ∈ Rn,

in which D := {(p, q) ∈ Rm × Rm | qi ≥ 0 and piqi ≤ 0, ∀i ∈ I}.
Obviously, P̂ (0) coincides to problem (P ). We denote the feasible set of P̂ (y) by Ŝ(y),
i.e.,

Ŝ(y) := {x ∈ Rn | Ψ(x) + y ∈ D}.
Therefore, we can consider Ŝ(.) as a set-valued mapping from R2m to Rn.

Theorem 3. Suppose that x̂ is an optimal solution of problem (P ) which the mapping

Ŝ is calm at (0, x̂), then

N(S, x̂) ⊆
⋃

λ∈N(D,Ψ(x̂))

[
m∑
i=1

(
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

)]
,

where λ =
(
λH1 , λ

G
1 , . . . , λ

H
m, λ

G
m

)
.

Proof. Taking g̃(x) = Ψ(x), M̃ = Ŝ, Ẽ = D, C̃ = Rn, and x = x̂ ∈ S = Ŝ(0) in
Theorem 2, we deduce that

N(S, x̂) ⊆
⋃

λ∈N(D,Ψ(x̂))

D∗Ψ(x̂)(λ) +N(Rn, x̂). (3.5)

On the other hand, according to (2.3), for each λ :=
(
λH1 , λ

G
1 , . . . , λ

H
m, λ

G
m

)
∈ R2m we

have

D∗Ψ(x̂)(λ) = ∂〈λ,Ψ(.)〉(x̂) = ∂

[
m∑
i=1

(
λHi Hi + λGi Gi

)]
(x̂)

⊆
m∑
i=1

[
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

]
,

in which the last inclusion is written regarding to (2.1).
From the above relation and (3.5) and the fact that N(Rn, x̂) = {0}, we conclude
that

N(S, x̂) ⊆
⋃

λ∈N(D,Ψ(x̂))

[
m∑
i=1

(
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

)]
.

�

The following theorem states a necessary condition for M-stationarity of (P ).

Theorem 4. Suppose that x̂ is an optimal solution of (P ). If the set-valued mapping

Ŝ is calm at (0, x̂), then x̂ is a M-stationary point for (P ).
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Proof. First, we would mention that the minimality of f on S at x̂ concludes that x̂
is a minimizer of f + ΘS on Rn. Applying Theorem 1, virtue of (2.1) and definition
of normal cone, we deduce that

0 ∈ ∂(f + ΘS)(x̂) ⊆ ∂f(x̂) + ∂ΘS(x̂) = ∂f(x̂) +N(S, x̂).

From this and Theorem 3 we can find a λ := (λH1 , λ
G
1 , . . . , λ

H
m, λ

G
m) ∈ N(D,Ψ(x̂)) such

that

0 ∈ ∂f(x̂) +

m∑
i=1

[
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

]
.

On the other hand, by [6, Lemma 3.2] we have

N(D,Ψ(x̂)) =
∏
i∈I00

B×
∏
i∈I0+

({0} × R)×
∏
i∈I0−

({0} × R−)

×
∏
i∈I+0

(R+ × {0})×
∏
i∈I+−

({0} × {0}), (3.6)

where B := {(r, s) ∈ R2 | r ≥ 0, rs = 0}. As a result

λGi ≥ 0, i ∈ I00 ∪ I+0; λGi = 0, i ∈ I0+ ∪ I0− ∪ I+0,

λHi free, i ∈ I00 ∪ I0+; λHi ≤ 0, i ∈ I0−; λHi = 0, i ∈ I+0 ∪ I+−,
λHi λ

G
i = 0, i ∈ I00.

Taking µGi := λGi , for each i ∈ I, and

µHi :=

{
−λHi , i ∈ I00,

λHi , i ∈ I \ I00,

the result is justified. �

According to Theorems 3 and 4, finding conditions that lead to calmness of mapping

S̃(.) has great importance. Considering another important applications of calmness,
many authors have placed the subject of their research on sufficient conditions for
calmness; see e.g., [4, 5, 10, 13, 15]. The following theorem will be useful in this
sequel.

Theorem 5. [5, Corollary 3.4] Consider the set-valued function M̂ : Rp ⇒ Rk,

M̂(y) := {x ∈ Ĉ | ĝ(x, y) ∈ Ê},

where ĝ : Rk × Rp → Rq is locally Lipschitz and Ê ⊆ Rq, Ĉ ⊆ Rk are closed. Let

(ȳ, x̄) ∈ GphM̂ and Ĉ be regular and semismooth at x̄ (in the sense of [5, Definition
2.2]). Further, assume the following qualification condition holds,⋃

z∗∈N(Ê,ĝ(x̄,ȳ))\{0}

[∂〈z∗, ĝ〉(x, y)]x ∩ −bd N(Ĉ, x̄) = ∅, (3.7)

where [ ]x denotes projection onto the x-component. Then M̂ is calm at (ȳ, x̄). It is
noteworthy that bd A denotes the topological bound of A.
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Now, we introduce a new CQ for problem (P ).

Definition 2. We say that the “No Nonzero Abnormal Multiplier Constraint Quali-
fication” (NNAMCQ in brief) is satisfied at x̂ if the following implication holds:

0 ∈
∑

i∈I00∪I+0

αi∂Gi(x̂)−
∑
i∈I0

βi∂Hi(x̂),

αi ≥ 0, ∀i ∈ I00 ∪ I+0,
βi ≥ 0, ∀i ∈ I0−,
αiβi = 0, ∀i ∈ I00,

⇒
{
αi = 0, ∀i ∈ I00 ∪ I+0,
βi = 0, ∀i ∈ I0.

The NNAMCQ has been introduced by Ye [16] for smooth MPECs (i.e., MPECs
with continuously differentiable data). Movahedian and Nobakhtian [11] extended
this concept to nonsmooth MPECs. To the best of our knowledge, there is no work
available dealing with NNAMCQ for MPVCs, even in smooth case.

Theorem 6. Suppose that x̂ is an optimal solution of (P ). If NNAMCQ is satisfied
at x̂, then x̂ is a M-stationary point for (P ).

Proof. According to (3.6), the assumption of NNAMCQ at x̂ can be rewritten as

0 ∈
∑
i∈I

[
λGi ∂Gi(x̂) + λHi ∂Hi(x̂)

]
,

λ :=
(
λG1 , λ

H
1 , . . . , λ

G
m, λ

H
m

)
∈ N (D,Ψ(x̂)) ,

}
=⇒ λ = 0,

which, owing to (2.1), implies that

0 ∈ ∂
[∑
i∈I

(
λGi Gi + λHi Hi

) ]
(x̂),

λ ∈ N (D,Ψ(x̂)) ,

 =⇒ λ = 0.

The above implication yields

0 /∈
⋃

06=λ∈N(D,Ψ(x̂))

[∂ (〈λ,Ψ(x) + y〉) (x̂, 0)]x , (3.8)

where y is a variable in R2m. Obviously, (3.8) is equivalent to (3.7) by taking p = q :=

2m, k := n, Ĉ := Rn, Ê := D, ĝ(x, y) := Ψ(x) + y, x̄ := x̂ and ȳ := 0. Therefore,

Theorem 5 implies that M̂(= Ŝ) is calm at (0, x̂), and Theorem 4 completes the
proof. �

4. Sufficient Condition

We know from classic nonlinear optimization that necessary optimality conditions
are also to be sufficient under certain convexity assumptions. These results can not
be applied for (P ) since the product function HiGi does not satisfy any convexity
assumptions, even when Hi and Gi are convex. In this section, we show that M-
stationarity is also sufficient optimality condition for nonsmooth MPVC (P ), provided
that some convexity assumptions hold for data functions f, Gi, Hi (i ∈ I).

In the remainder of this paper, we shall need the following definition from [14].

Definition 3. Let ϕ : Rn → R be a locally Lipschitz function.
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(i): ϕ is said to be ∂-quasiconvex at x̂ if for all x ∈ Rn,

ϕ(x) ≤ ϕ(x̂) =⇒ 〈ξ, x− x̂〉 ≤ 0, ∀ξ ∈ ∂ϕ(x̂).

(ii): ϕ is said to be ∂-pseudoconvex at x̂ if for all x ∈ Rn,

ϕ(x) < ϕ(x̂) =⇒ 〈ξ, x− x̂〉 < 0, ∀ξ ∈ ∂ϕ(x̂).

It is worth mentioning that some important properties of ∂-quasiconvex and\or ∂-
pseudoconvex functions are presented in [14]. Also, they provided some comparisons
of these mentions with classic quasiconvex and\or pseudoconvex functions in convex
analysis.

The following sufficient condition for M-stationarity is the nonsmooth version of
[8, Theorem 3.3].

Theorem 7. Let x̂ be a M-stationary point for (P ) with corresponding multipliers
µ ∈ R2m satisfying (3.1)-(3.4). We divide the constraint index sets as follows:

I+
00 := {i ∈ I00 | µHi > 0}, I−00 := {i ∈ I00 | µHi < 0},

I+
0− := {i ∈ I0− | µHi > 0},

I+
0+ := {i ∈ I0+ | µHi > 0}, I−0+ := {i ∈ I0+ | µHi < 0},

I0+
+0 := {i ∈ I+0 | µHi = 0, µGi > 0},
I0+
00 := {i ∈ I00 | µHi = 0, µGi > 0}.

Suppose that f is ∂-pseudoconvex at x̂. Furthermore, assume that Gi (i ∈ I0+
+0 ), Hi (i ∈

I−0+), −Hi (i ∈ I+
0+∪I

+
00∪I

+
0−) are ∂-quasiconvex. Then, in the case when I−0+∪I

−
00∪

I0+
+0 ∪ I

0+
00 = ∅, x̂ is a global minimizer of (P ); in the case when I−00 ∪ I

0+
00 = ∅, x̂ is a

local minimizer of (P ).

Proof. Owing to the virtue (3.1), we can find some vectors ξf ∈ ∂f(x̂), ξHi ∈ ∂Hi(x̂)
and ξGi ∈ ∂Gi(x̂), for i ∈ I, such that

ξf +

m∑
i=1

(−λHi ξHi + λGi ξ
G
i ) = 0. (4.1)

Let x? be any feasible point for (P ). Since −Hi(x
?) ≤ 0 = −Hi(x̂) for i ∈ I+

0+ ∪ I
+
00 ∪

I+
0−, the ∂-quasiconvexity of −Hi implies that

〈ζi, x? − x̂〉 ≤ 0, ∀ζi ∈ ∂(−Hi)(x̂), i ∈ I+
0+ ∪ I

+
00 ∪ I

+
0−. (4.2)

Taking ϕ = −Hi in inclusion (2.2), we obtain that ∂Hi(x̂) ⊆ −∂(−Hi)(x̂), and hence
ξHi = −ζi for some ζi ∈ ∂(−Hi)(x̂). From this, inequality (4.2), and positivity of µHi
for i ∈ I+

0+ ∪ I
+
00 ∪ I

+
0−, we get

〈−ξHi , x? − x̂〉 ≤ 0, ∀i ∈ I+
0+ ∪ I

+
00 ∪ I

+
0−

⇒
∑

i∈I+0+∪I
+
00∪I

+
0−

−µHi 〈ξHi , x? − x̂〉 ≤ 0. (4.3)

In the case when I−0+ ∪ I
−
00 ∪ I

0+
+0 ∪ I

0+
00 = ∅, we obviously have
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I = I+
00 ∪ I

−
00 ∪ I

+
0+ ∪ I

−
0+ ∪ I

+
0− ∪

(
I0− \ I+

0−
)
∪ I+ = I+

00 ∪ I
+
0+ ∪ I

+
0− ∪

(
I0− \ I+

0−
)
∪ I+.

From this, virtue of (3.3), the fact that µHi = 0 for i ∈ I0− \ I+
0−, and (4.3) we deduce

that ∑
i∈I
−µi〈ξHi , x? − x̂〉 =

∑
i∈I+0+∪I

+
00∪I

+
0−

−µi〈ξHi , x? − x̂〉 ≤ 0. (4.4)

On the other hand, we have

I = I+− ∪ I0− ∪ I0+ ∪ I0+
00 ∪ (I00 \ I0+

00 ) ∪ I0+
+0 ∪ (I+0 \ I0+

+0 )

= I+− ∪ I0− ∪ I0+ ∪ (I00 \ I0+
00 ) ∪ (I+0 \ I0+

+0 ). (4.5)

The above equality, (3.2), and the fact that µGi = 0 for all i ∈ (I00 \I0+
00 )∪ (I+0 \I0+

+0 ),
imply that∑

i∈I
−µGi 〈ξGi , x? − x̂〉 = 0.

The last equality and (4.4) yield

〈
n∑
i=1

(
−µHi ξHi + µGi ξ

G
i

)
, x? − x̂〉 ≤ 0, (4.6)

and thus, in view of the (4.1), we have 〈ξf , x? − x̂〉 ≥ 0, which implies f(x?) ≥ f(x̂)
as f is ∂-pseudoconvex at x̂. Since x? is an arbitrary point in S, then x̂ is a global
minimizer of (P ).

Now, we consider the case that I−00 ∪ I
0+
00 = ∅.

Let i ∈ I0+. Since Gi is continuous, there exists a neighborhood Ui for x̂ such that
Gi(x) > 0 for all x ∈ Ui. If x ∈ Ui∩S, then Gi(x) > 0, Hi(x) ≥ 0 and Gi(x)Hi(x) ≤ 0,
which imply Hi(x) = 0. Taking V1 =

⋂
i∈I0+ Ui, we deduce that

Hi(x) = 0, Gi(x) > 0, ∀i ∈ I0+, ∀x ∈ V1 ∩ S.
By similar argument, we also obtain that for a neighborhood V2 of x̂ one has

Hi(x) > 0, Gi(x) ≤ 0, ∀i ∈ I+0, ∀x ∈ V2 ∩ S.

Taking into account the ∂-quasiconvexity of Gi (for i ∈ I0+
+0 ) and Hi (for i ∈ I−0+), for

all x ∈ S ∩ V1 ∩ V2 we have

Gi(x) ≤ 0 = Gi(x̂)⇒ 〈ξGi , x− x̂〉 ≤ 0, ∀i ∈ I0+
+0 ,

Hi(x) = 0 ≤ Hi(x̂)⇒ 〈ξHi , x− x̂〉 ≤ 0, ∀i ∈ I−0+.

Thus, we can again show that the inequality (4.6) holds for x ∈ S ∩ V1 ∩ V2, hence
〈ξf , x− x̂〉 ≥ 0. The ∂-pseudoconvexity of f at x̂ justifies the result. �

Remark 1. We can generalize the results of Theorem (7) by replacing pseudocon-
vexity (resp. quasiconvexity) with pseudoinvexity (resp. quasiinvexity), which are
introduced in [2, 3] and extended in [12]. Since the proof of this extension is the same
as Theorem (7), we omit it.

Finally, we will explain our result by the following example.
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Figure 1.

Example 1. Consider the following problem,

min f(x1, x2) = x2
1 + |x2|,

s.t. x2 ≤ 0,

x1(|x2| − |x1|) ≥ 0,

|x1| − |x2| ≥ 0.

One can consider the above problem as MPVC such that,

H1(x1, x2) = −x2, H2(x1, x2) = |x1| − |x2|,
G1(x1, x2) = −1, G2(x1, x2) = −x1.

We have shown the feasible set S in Fig 1. Obviously, S is not convex. We consider
x̂ = (0, 0). Clearly, I0− = {1}, and I00 = {2}. Now, by choosing µH1 = µH2 = 1

2 and

µG1 = µG2 = 0, the conditions (3.2)-(3.4) and the following inclusion are followed

(0, 0) ∈ ({0} × [−1, 1])− λH1 {(0,−1)} − λH2 ([−1, 1]× [−1, 1])

+ λG1 {(0, 0)}+ λG2 {(−1, 0)}.

Thus, x̂ is a M-stationary point for problem. Since the convexity assumptions of
Theorem 7 hold and I−0+ ∪ I

−
00 ∪ I

0+
+0 ∪ I

0+
00 = ∅, thus x̂ is a global optimal solution of

problem.

5. Conclusion

Motivated by [9], we considered the nonsmooth mathematical programing with
vanishing constraints, MPVC for short. We introduced a new constraint qualification
for MPVC. This constraint qualification guarantees an optimality condition to hold
at a local minimum, named M-stationary condition. Finally, we showed that M-
stationary condition (which is weaker than statandard KKT condition) is sufficient
optimality condition for an interesting class of MPVCs.
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