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Abstract In this paper, we proposed an effective method based on the scaling function of
Daubechies wavelets for the solution of the brachistochrone problem. An analytic
technique for solving the integral of Daubechies scaling functions on dyadic intervals

is investigated and these integrals are used to reduce the brachistochrone problem
into algebraic equations. The error estimate for the brachistochrone problem is
proposed and the numerical results are given to verify the effectiveness of our method.
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1. Introduction

For the last three decades wavelet theory has attracted a lot of interests because of
the advantages of it over former theories specially in better approximating functions
that have discontinuous and sharp peaks. Various kinds of wavelets were generated,
among them, Daubechies wavelets which discovered by Ingrid Daubechies in 1988,
have attracted tremendous attention due to their significant properties in numerical
analysis. They are orthogonal wavelets, compactly supported, the degree of their
vanishing moment is not limited and the most important property of the Daubechies
wavelets is that their regularity increases linearly with their support width [5]. These
characteristics make Daubechies wavelets a good candidate for solving Calculus of
Variation (CV) problems. The wavelet application in CV and optimal control prob-
lems have been discussed in some papers. For example Razzaghi and Yousefi used
Legendre wavelets for the solution of nonlinear problems in the Calculus of Variations
[16], the Haar wavelet is used for solving CV problems by Zarebnia and Barandak
Imcheh [22] and Karimi et al. used Haar wavelet for solving optimal control problems
[10]. But as we know the Haar wavelet has the simplest linear discontinuous shape

Received: 22 July 2019 ; Accepted: 8 March 2020.
∗ corresponding.

511



512 A. KASNAZANI AND A. ALIPANAH

and the precession of its approximation is not sufficient. In the Legendre wavelet when
the order of Legendre polynomials increases, in practice, due to the large polynomial
oscillation, precision decreases. Daubechies wavelets and their scaling functions have
no explicit form which causes serious difficulties in computations. According to our
information, so far these wavelets have not been used for solving CV and optimal
control problems. In this paper, we overcame this problem and it has been explained
that how these wavelets can be applied for solving CV problems.
Historically, the brachistochrone problem is the first CV problem that Johann Bernoulli
introduced in 1696 [8, 19]. In recent years a great deal of research has focused on
approximating the solution for the brachistochrone problem. For example the gradi-
ent method [2], successive sweep algorithm [2, 3], the classic Chebshev method [9],
multistage Monte Carlo method [20], rationalized Haar functions [15] and nonclassical
pseudospectral method [1, 12].
The purpose of this paper is to introduce a new method for solving the brachis-
tochrone problem based on scaling functions of Daubechies wavelets. With the use of
the features of Daubechies scaling functions, many parts of the problem are accurately
calculated and for the first time an error analysis has been done.
In this paper, first the integrals of Daubechies scaling functions on dyadic intervals
(i.e., the first point and last point of interval is dyadic point) are computed exactly.
Then, the unknown function in the brachistochrone problem and its first derivative
are projected in the Daubechies scaling functions space with the unknown coefficients
and next the main integral in the brachistochrone problem is approximated by the
simpson method. After that by applying the necessary conditions for finding ex-
tremum, the brachistochrone problem is transformed into algebraic equations.
This paper is organized as follows. In Section 2, we briefly deal with a description of
Daubechies wavelets and evaluation of Daubechies scaling functions at dyadic points.
In Section 3, a procedure for obtaining integrals which contain scaling function of
Daubechies wavelets on dyadic intervals is presented. In Section 4, The method for
solving the brachistochrone problem is put forwarded. This is followed by an investi-
gating of error analysis and in the rest of this section, numerical results are shown.

2. Daubechies scale function

Daubechies wavelets are generated from the scaling function ϕ(x) with the compact
support [0, 2p−1] where p is the number of vanishing moments. These wavelets such as
other wavelets have the ability to represent a function in different levels of resolution.
The scaling function ϕ(x) and Daubechies wavelet ψ(x) satisfy their two scale relations
or dilation equation:

ϕ(x) =

2p−1∑
k=0

hkϕ(2x− k), (2.1)

ψ(x) =

2p−1∑
k=0

gkϕ(2x− k).
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In [17], the exact values of hk are evaluated by imposing some useful properties of
daubechies wavelets such as orthogonality and ability to exactly represent polynomials
of degree smaller than p. In [11], it is proven that for a fixed p, there exists only one
linear independent scaling function ϕ , which satisfies in Eq. (2.1) and if we denote
D = 2p then the parameter D is called the wavelet genus or Daubechies number
[5, 14]. The following relation between hk and gk is hold [6]

gk = (−1)khD−k−1.

In order to achieve representation of functions in Hilbert space L2(R) at different
levels of resolution [6, 21], one can use the translated dilations of the scaling function,
defined as:

ϕj,k(x) = 2
j
2ϕ(2jx− k), j, k ∈ Z.

The set of orthogonal functions ϕj,k for particular j, generates the subspace Vj . The
vector subspaces Vj satisfy the following conditions [4, 6]

1. ∪j∈ZVj = L2(R),
2.∩j∈ZVj = {0},
3. Vj ⊂ Vj+1, j ∈ Z.

For each j, since Vj is a proper subspace of Vj+1, there is some space in Vj+1 called
Wj , which when combined with Vj gives us Vj+1. This space Wj is called the wavelet
subspace and is orthogonal complementary to Vj in Vj+1, and so

Vj+1 = Vj ⊕Wj ,

where ⊕ represents a direct sum. So

L2(R) = ⊕j∈ZWj .

Let {ψ(.− k)| k ∈ Z}, be an orthonormal basis of the subspace W0, which ψ(x) is
known as mother wavelet. Then

ψj,k(x) = 2
j
2ψ(2jx− k), k ∈ Z,

is an orthonormal basis for Wj . Generally, scaling functions of Daubechies wavelet
do not have a closed form. Instead, one can use Eq. (2.1) to determining the scaling
function ϕ(x) in all dyadic points. The complete explanation of this procedure is
named cascade algorithm and is introduced in [13, 14].

3. Integration of Daubechies scaling function on dyadic interval

As previously mentioned, the support of Daubechies scaling function with p van-
ishing moments is [0, D − 1] where D = 2p. In this section, first, the integral of
Daubechies scaling function on integer intervals is computed. Then by using a recur-
sion relation (2.1) the integral of Daubechies scaling function on every dyadic interval,
in arbitrary resolution will be computed.
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3.1. Computing the integral of Daubechies scaling function on integer in-
tervals. For simplicity we define

A[a,b] =

∫ b

a

ϕ(x)dx. (3.1)

Then by applying Eq. (2.1) to the scaling function ϕ, the following results is obtained:

A[0,i] :=

∫ i

0

D−1∑
k=0

hkϕ(2x− k)dx, i ∈ Z

=
1

2

D−1∑
k=0

hk

∫ 2i−k

−k

ϕ(t)dt

=
1

2

D−1∑
k=0

hkA[0,2i−k],

or

A[0,i] =
1

2

D−1∑
k=0

hkA[0,2i−k]. (3.2)

It is clearly the following equations are held:

A[0,i] = 1, if i ≥ D − 1, (3.3)

A[0,i] = 0, if i ≤ 0. (3.4)

Eqs. (3.2)-(3.4) can be written as a system of linear equations Cx = b, where the
entries of matrices C, x and b are given as

Ci,j =

{
2− hi for i = j,
−h2i−j for i ̸= j,

bi =


0 i ≤ p− 1,

2(i−p)+1∑
k=0

hk i ≥ p,

xi = A[0,i], 1 ≤ i ≤ D − 2,

hence the unknown parameters A[0,i] can be computed by solving the above linear
system. For example linear system of equations (3.2)-(3.4), when D = 4 and D = 6
are given as follows:
for D = 4[

2− h1 −h0
−h3 2− h2

] [
A[0,1]

A[0,2]

]
=

[
0

h0 + h1

]
,
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and for D = 6


2− h1 −h0 0 0
−h3 2− h2 −h1 −h0
−h5 −h4 2− h3 −h2
0 0 −h5 2− h4



A[0,1]

A[0,2]

A[0,3]

A[0,4]

 =


0
0

h0 + h1∑3
i=0 hi

 .
Obviously matrices of coefficients in these linear systems are diagonally dominant
matrices and so computing A[0,i] encounters no difficulty. In the case D = 4 the
answers are
A[0,1] = .8496793685588857 and A[0,2] = 1.016346035225553.

3.2. Computing the integrals of Daubechies scaling function on dyadic ra-
tional intervals. In the previous subsection, the values of A[a,b], exactly computed
when a and b are integers, and now we obtain a recursion relation for computing
A[

l2−j ,(l+1)2−j
], when j ∈ N and 0 ≤ l ≤ (D − 1)2j − 1 as

A[
l2−j ,(l+1)2−j

] = ∫ (l+1)2−j

l2−j

ϕ(x)dx

=

∫ (l+1)2−j

l2−j

(
D−1∑
k=0

hkϕ(2x− k)

)
dx

=
D−1∑
k=0

1

2
hk

∫ (l+1)21−j−k

l21−j−k

ϕ(t)dt

=
1

2

D−1∑
k=0

hkA[
l21−j−k,(l+1)21−j−k

].
By using this recursion relation, the values of A[a,b] are computed when a and b are
dyadic rational. The values of A[a,b] for a Daubechies scaling function for D = 4 are
given in Table 1.

Table 1. The values of A[a,b] for Daubechies when D = 4

A[0, 14 ]
= 9.9095205e(−2) A[1, 54 ]

= 1.7456594e(−1) A[2, 94 ]
= −2.3661145e(−2)

A[ 14 ,
2
4 ]

= 1.9107569e(−1) A[ 54 ,
6
4 ]

= 5.3104960e(−2) A[ 94 ,
10
4 ] = 5.8193442e(−3)

A[
2
4 ,

3
4 ] = 2.4938899e(−1) A[ 64 ,

7
4 ]

= −1.0216272e(−3) A[ 104 , 114 ] = 1.6326381e(−3)

A[
3
4 , 1] = 3.1011948e(−1) A[ 74 ,2]

= −5.9982607e(−2) A[ 114 ,3] = −1.3687209e(−4)
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4. Brachistochrone problem

The brachistochrone problem may be formulated as minimizing the performance
index J ,

J =

∫ 1

0

[
1 + (y′(x))2

1− y(x)

]1/2
dx, (4.1)

y(0) = 0, y(1) = −0.5. (4.2)

As is well known, the exact solution to the brachistochrone problem is a cycloid given
by the following parametric equations [7].

y = 1− β

2
(1 + cos 2α), x =

c

2
+
β

2
(2α+ sin 2α),

with given boundary conditions, the integration constants are found to be

β = 1.6184891, c = 2.7300631.

4.1. Solution of the brachistochrone problem by the scaling functions of
Daubechies wavelets. In this section, we use the scaling functions of Daubechies
wavelets to approximate the solution of brachistochrone problem. In order to use
Daubechies scaling functions, with a suitable linear transformation, we change the
integration interval [0, 1] in Eq. (4.1) into [0, D− 1]. Let Pj(y

′) denotes the operator
that orthogonally projects y′ onto Vj , so

y′ ≃ Pj(y
′),

and so

Pj(y
′) =

k2∑
k=k1

aj,kϕj,k(x), (4.3)

where k1 and k2 are such that the last point in the support of ϕj,k1 is smaller than 0
and the first point in the support of ϕj,k2 is bigger than D − 1, so

k1 = 2ja+ 2− L, and k2 = 2j(D − 1)− 1.

In order to approximating y in Eq. (4.1), we integrate Pj(y
′) in Eq. (4.3)∫ x

0

Pj(y
′)dt =

k2∑
k=k1

aj,k

∫ x

0

ϕj,k(t)dt,

hence

y(x) ≃
k2∑

k=k1

aj,k

∫ x

0

ϕj,k(t)dt+ y(0).

Let Hj,k(x), be defined as follows:

Hj,k(x) =

∫ x

0

ϕj,k(t)dt, (4.4)
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then we have

y(x) ≃
k2∑

k=k1

aj,kHj,k(x) + y(0). (4.5)

From Eqs. (2.1) - (3.1) and (4.4) for dyadic xis we get

Hj,k(xi) =

∫ xi

a

2
j
2ϕ(2

jt− k)dt

= 2−
j
2

∫ 2jxi−k

−k

ϕ(s)ds

= 2−
j
2A[−k,2jxi−k],

or simplicity

Hj,k(xi) = 2−
j
2A[−k,2jxi−k]. (4.6)

Hence values of Hj,k(xi) analytically will be computed when xis are dyadic points
and so no error occurs in approximating y from y′. For simplicity if the integrant in
Eq. (4.1) is written as F (x, y, y′) then by substituting Eqs. (4.3) and (4.5) in Eq.
(4.1) we get

J [y] =

∫ D−1

0

F

(
x,

k2∑
k=k1

aj,kHj,k(x),

k2∑
k=k1

aj,kϕjk(x)

)
dx.

Let xi be a dyadic point in [0, D − 1] and by using (4.6)

Fi = F
(
xi,

k2∑
k=k1

2−
j
2 aj,kA[−k,2jxi−k],

k2∑
k=k1

aj,kϕjk(xi)
)
, i = 1...n,

and composite Simpson integration such that nodes be dyadic points we have

J (aj,k1 , . . . , aj,k2) =
h

3

[
F0 − Fn +

n
2∑

i=1

(4F2i−1 + 2F2i)
]
, (4.7)

where n = 25+2j and h = n−1.
Therefore J [y] transforms into function J(aj,k1 , . . . , aj,k2) and brachistochrone prob-

lem transforms into finding coefficients aj,k1
, . . . , aj,k2

such that function J(aj,k1
, . . . ,

aj,k2) is minimum. Now the boundary conditions (4.2) will also be expanded by
Daubechies scaling function,

y(0) =

k2∑
k=k1

aj,kHj,k(0) + y(0), (4.8)

y(D − 1) =

k2∑
k=k1

aj,kHj,k(D − 1) + y(0). (4.9)
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From Eq. (4.4) it is clear that

Hj,k(0) = 0, j, k ∈ Z,

and by using Lagrange multipliers technique [7], for Eqs. (4.7) and (4.9) we get

J∗ = J(aj,k1 , . . . , aj,k2) + aj,k2+1

( k2∑
k=k1

aj,kHj,k(D − 1) + y(0)− y(D − 1)
)
.

The necessary conditions for obtaining the extremum of the above equation is

∂J∗

∂aj,i
= 0, i = k1, . . . , k2 + 1. (4.10)

Eequations (4.10) give us k2 − k1 +1 nonlinear equations with k2 − k1 +1 unknowns,
which can be solved for the unknowns aj,k, k = k1, · · · , k2 + 1 by using Newtons
iterative method.

4.2. Error analysis. By defining E and Ê as below:

E := ∥y − Pj(y)∥∞,

Ê := ∥y′ − Pj(y
′)∥∞,

it can be concluded as follows [18]

E = O(2−j), Ê = O(2−j). (4.11)

Lemma 4.1. Let F (y, y′) :=
[
1+(y′(t))2

1−y(t)

] 1
2

and y(0) = 0, y(1) = −0.5. Then√
2

3
≤ F (y, y′) ≤

√
1 + (y′)2(0) + g, (4.12)

where g is acceleration due to gravity.

Proof. In the brachistochrone problem one should find the shape of the curve down,
which a bead sliding from rest and accelerated by gravity will slip (without friction)
from point (0, 0) to (1,−0.5) in the least time. So it is clearly that −0.5 ≤ y(t) ≤ 0,
for all t ∈ [0, 1]. Therefore

2

3
≤ 1

1− y(t)
≤ 1. (4.13)

In addition y′(t) is the velocity of the mass in time t, and we have that

(y′(t))
2 ≤ (y′(0))

2
+ g, (4.14)

So from Eqs. (4.13)-(4.14) we conclude that√
2

3
≤ F (y, y′) ≤

√
1 + (y′(0))

2
+ g.

□
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Theorem 4.2. Let J be the functional given in Eq. (4.1), then∣∣∣J [y]−J [Pj(y)]
∣∣∣ ≤ √

3

2
√
2

(
1 + y′2(0) + g

)
E+

3
√
3

2
√
2
Ê

[√
y′2(0) + g+

Ê

2

]
. (4.15)

Proof. For simplicity, let X(t) and X ′(t) be the approximation of y(t), y′(t) respec-
tively, and be given as follows

X(t) =

k2∑
k=k1

aj,k

∫ x

0

ϕj,k(t)dt+ y(0), X ′(t) =

k2∑
k=k1

aj,kϕj,k(x),

therefore we have

J [y]− J [X] =

∫ 1

0

(1 + y′
2

1− y

) 1
2

−

(
1 +X ′2

1−X

) 1
2

 dt, (4.16)

by simplifying the above equation we have∣∣∣J [y]− J [X]
∣∣∣ = ∫ 1

0

∣∣∣∣∣ (y −X) + (y′ −X ′)(y′ +X ′) + (X ′)
2
y − (y′)

2
X(

F (y, y′) + F (X,X ′)
)
(1− y)(1−X)

∣∣∣∣∣ dt.
(4.17)

Now suppose that y(t) = X(t) + ε(t), where ε(t) is the error of approximation by
Daubechies scaling function and it is clear that

|ε(t)| ≤ E, |ε′(t)| ≤ Ê. (4.18)

From Eq. (4.18) we have

(X ′(t))
2
y(t)− (y′(t))

2
X(t) = ε(t) (y′(t))

2
+ y(t)ε′(t) (ε′(t)− 2y′(t)) , (4.19)

also from lemma 4.1 and Eq. (4.13) and this fact that ε(t) is small, we have the
following relation

1

(F (y, y′) + F (X,X ′)) |(1− y)(1−X)|
≤

√
3

2
√
2
. (4.20)

So from Eqs. (4.15) - (4.20) we have∣∣∣J [y]− J [X]
∣∣∣ ≤ √

3

2
√
2

∫ 1

0

|ε(t)|
(
1 + y′2(t)

)
+ |ε′(t)|| (1− y)(2y′ − ε′(t))|) dt,

(4.21)

therefore by using Eq. (4.14) the above equation can be expressed in the following
form

|J [y]− J [X]| ≤
√
3

2
√
2

(
1 + y′2(0) + g

)
E +

3
√
3

2
√
2
Ê

[√
y′2(0) + g +

Ê

2

]
.

□
According to Eq. (4.11) values of E and Ê decrease, when resolution j increases

and so Theorem 4.2 shows that the error of our method is limited.
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4.3. Numerical results. All computational efforts in this work has carried out using
Maple software in 16 decimal digits. Using Daubechies scaling functions with two
vanishing moments, the computational results are summarized in Figure 1, Table 2
and Table 3. Also the numerical results obtained via other methods given in literatures
are given in Table 4. The relative error for resolution j is defined as

Ej =
|Jexact − Jj |

Jexact
, (4.22)

where Jexact is 0.9984981482937085306776 [1] and so relative error and absolute error
are very close. From Figure 1 and Table 2, it is obviously observed that despite
of using the weakest Daubechies scaling function with 2 vanishing moments when
resolution j increases, the numerical results are excellent in comparison with other
methods given in Table 4.

Table 2. Numerial results of the presented method for y′(0) in the
brachistochrone problem

j y′(0)
0 -0.7503150486
1 -0.7852018649
2 -0.7860920771
3 -0.7864785072
4 -0.7864450197
5 -0.7864402049
6 -0.7864407452
7 -0.7864407974

Table 3. Numerial results of the presented method for J in the
brachistochrone problem

j J Ej

0 0.9981985988492 3.0e(−4)
1 0.9984132759511 8.5e(−5)
2 0.9984944538506 3.7e(−6)
3 0.9984973594802 7.9e(−7)
4 0.9984980863868 6.2e(−8)
5 0.9984981402059 8.1e(−9)
6 0.9984981478644 4.3e(−10)
7 0.9984981482328 6.1e(−11)
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Table 4. Numerical results of other methods for the brchistochrone problem.

Methods y′(0) error for J

Gradient Method[2] −0.7832273 0.7e(−6)

Successive sweep method [2, 3] −0.7834292 0.8e(−6)

Chebyshev solution[9] −0.7864406 0.1e(−6)

Legendre wavelets[15] −0.7864408 0.1e(−10)

Nonclassical pseudospectral[1, 12] −0.78644079 0.1e(−11)

...

..

0

.

1

.

2

.

3

.

4

.

5

.

6

.

7

.

10−11

.

10−9

.

10−7

.

10−5

.

10−3

.

j

.

E
j

Figure 1. Relative errors Ej , for different resolution j = 0, 1, · · · , 7.

5. Conclusion

In this paper, we use an analytic method for computing the integration of Daubechies
scaling functions. In this technique, y and its derivation are projected in Daubechies
scaling function space. We applied a direct method for solving the brachistochrone
problem and this well-known problem is completely solved by the new proposed pro-
cedure. It is believed that the approach is a powerful and efficient direct method
and by considering the error analysis of the problem and the numerical results, if we
apply higher vanishing moments and higher resolutions, much better results can be
approachable. The method of using the Daubechies scaling function basis to solve
brachistochrone problem reduces it to nonlinear algebraic equations. One of the great
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advantages of our method is that Daubechies wavelets are compactly supported and
increasing in vanishing moments will yield smoother wavelets. So our method for
approximating curves with discontinuities and sharp peaks is a good choice. The only
disadvantage of our method is that the computations are available only in dyadic
points and dyadic intervals.
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