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Abstract In this paper, a numerical method is developed and analyzed for solving a class of
fractional optimal control problems (FOCPs) with vector state and control func-
tions using polynomial approximation. The fractional derivative is considered in the
Caputo sense. To implement the proposed numerical procedure, the Ritz spectral

method with Bernoulli polynomials basis is applied. By applying the Bernoulli poly-
nomials and using the numerical estimation of the unknown functions, the FOCP is
reduced to solve a system of algebraic equations. By rigorous proofs, the convergence

of the numerical method is derived for the given FOCP. Moreover, a new fractional
operational matrix compatible with the proposed spectral method is formed to ease
the complexity in the numerical computations. At last, several test problems are
provided to show the applicability and effectiveness of the proposed scheme numer-

ically.
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1. Introduction

Nowadays, the role played by fractional order calculus in modeling signal pro-
cessing, optimal control, optimization problems and other fields of science is very
effective. Because of long-range interaction of fractional and integer calculus, it will
bring about more accurate and precise behavioral description of many processes and
practical plants in many contexts such as biophysics and biochemistry [11,12,15,25],
disease control [18, 44], optimal control problems [1, 10, 13, 30, 31] and so on. In fact,
to include memory effects, i.e. the influence of the behavior of the system in the
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past, the fractional derivative is more suitable tool to be considered for system defi-
nition [16]. Besides, a vivid application of fractional calculus is in the optimal control
problems [4,34,41,43,50]. A fractional optimal control problem consists of finding an
optimal control function along with optimal state function minimizing the given per-
formance index as well as satisfying the dynamical system constraint. Obviously, most
of the fractional optimal control problems do not have analytical solution. Alterna-
tively, many researchers have focused on numerical solution of the fractional optimal
control problems, instead [5,20–22,38,53]. In the literature, several papers address the
numerical solution of FOCPs using polynomials and orthogonal functions [23,32,38].

The next issue in FOCPs is to find an optimal solution. In addition, determining
an optimal controller in real systems like cryptography and secure data transmission
instances is vital because of providing high speed technology [2]. Owing to their high
order of accuracy, spectral and pseudospectral methods have been used for solving
a wide variety of fractional optimal control problems as well as variational prob-
lems [14, 26, 35, 51]. The key point in these methods is to consider the interpolating
polynomial basis on the overall interval rather than just on the equally spaced points
on subintervals [8, 9].

Since a system description using differential equation having derivative of order
greater than one can be stated with a system of differential equations, many re-
searchers have considered the vector functions in their work instead of scalar state
functions. Sayevand and Rostami studied the fractional optimal control problems
(FOCPs) and obtain the necessary and sufficient optimality conditions for vector
function [48]. Pommaret and Quadrat studied controllable linear multidimensional
systems by transforming linear quadratic optimal problem into that of a variational
problem without constraints [37].

In this work, by considering the spectral Ritz method, an estimated state vector
function is constructed. An interesting active research field of fractional calculus is
the FOCPs in which the dynamical system as well as cost function involve not only
integer order derivatives but also fractional order derivatives or integrals [6, 27]. On
the other hand, some dynamical models such as light amplification in Erbium-doped
fiber amplifier which is one of the most commonly used type of fiber amplifiers in metro
optical networks may have both of the fractional and integer order derivatives [36].

By using the Ritz method, all the given initial-boundary conditions can be easily
met. Therefore, using the proposed auxiliary functions, the given initial and boundary
conditions are also assumed in the approximate function. By considering the dynam-
ical system constraint, the approximate control function is also identified. In the next
part of the paper, to reduce the computational complexity on fractional derivative of
the Bernoulli basis, a new fractional operational derivative matrix of Caputo type is
also constructed. It is known that the Bernoulli polynomials are complete [29].

There are special attentions for fractional operational matrix of Bernstein poly-
nomials [33, 47, 52], Legendre polynomials [32, 39, 46], Laguerre polynomials [28],
Bernoulli polynomials and Bernoulli wavelets [17, 40, 42, 49]. By applying the new
formed operational derivative matrix, the arisen computational complexity is sim-
plified. Substituting the approximate state function and control input into the cost
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function and estimating the integral yields an optimization problem without any con-
straint. By utilizing the given tools and applying the necessary conditions of optimal-
ity, the problem is converted into a system of algebraic equations. To find the optimal
solution, the numerical methods like Newton’s iterative method can be applied.

The outline of this paper is as follows: In section 2, some important and basic
definitions are described. In section 3, the Bernoulli fractional operational matrix
of Caputo derivative is constructed. In section 4, we define the main problem of
fractional optimal control. Section 5 is devoted to the convergence analysis of the
proposed scheme. The numerical findings and illustrative test problems are provided
in section 6 to show the accuracy of the numerical method. In section 7, the main
results are summarized.

2. Preliminaries

2.1. Basic definitions. In this part, we recall some basic definitions needed in sequel.
Let x : [a, b] → R and α > 0 be the order of fractional derivative or integral. First
the Riemann-Liouville fractional integral is defined. Next, the fractional derivatives
are also defined. For t ∈ [a, b] we have the following definitions:

Definition 2.1. The left and right Riemann-Liouville fractional integral of order
α > 0 of the function x(t) on t ∈ [a, b] are defined as follows, respectively

aI
α
t x(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1x(τ)dτ,

tI
α
b x(t) =

1

Γ(α)

∫ b

t

(τ − t)α−1x(τ)dτ.

Definition 2.2. The left and right Riemann-Liouville fractional derivatives of order
α > 0 of the function x are defined as, respectively

aD
α
t x(t) =

1

Γ(n− α)

dn

dtn

(∫ t

a

(t− τ)n−α−1x(τ)dτ

)
,

tD
α
b x(t) =

(−1)n

Γ(n− α)

dn

dtn

(∫ b

t

(τ − t)n−α−1x(τ)dτ

)
,

where n− 1 < α ≤ n, and n ∈ N.

Definition 2.3. The left and right Caputo fractional derivatives of order α > 0 of
the function x are defined as follows, respectively

C
a D

α
t x(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1 dn

dτn
x(τ)dτ,

C
t D

α
b x(t) =

(−1)n

Γ(n− α)

∫ b

t

(τ − t)n−α−1 dn

dτn
x(τ)dτ,

where n− 1 < α ≤ n, and n ∈ N.
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2.2. The Bernoulli Basis. The sequence of Bernoulli polynomials {Bm},m ∈ N ∪ {0}
is defined on the interval [0, 1] by the following formula

Bm(t) =
m∑

k=0

(
m

k

)
βm−kt

k, (2.1)

where βk = Bk(0) = (−1)kBk(1) are the known Bernoulli numbers and they can be
obtained from the generating function as

z

ez − 1
=

∞∑
n=0

βn
zn

n!
. (2.2)

The Bernoulli polynomials can also be extended to be defined on the interval [a, b].
Therefore they are defined as [24]

B[a,b]
m (t) = (b− a)mBm

(
t− a

b− a

)
. (2.3)

The first few number of these polynomials on the interval [0, 1] are

B0(t) = 1, B1(t) = t− 1

2
, B2(t) = t2 − t+

1

6
.

Its worth to note that the Bernoulli polynomials are dense in the complete space
L2[0, 1] [17, 19].

3. Bernoulli Fractional Operational Matrix of Caputo Derivative

In this section, without loss of generality, we assume that the interval be [0, 1]. In
order to compute the fractional and integer order derivatives of the Bernoulli poly-
nomials and to simplify computational complexity of the equations, a new modified
Bernoulli operational matrix is introduced as

C
0 D

α
t (tpBm(t)) ≃ Aα,p

m,m̃Bm̃(t), (3.1)

where p ≥ 0 is a real number and Bm(t) is a vector of Bernoulli polynomials as

Bm(t) =


B0(t)
B1(t)

...
Bm(t)

 . (3.2)

Obviously, referring to the fractional computations, one may compute C
0 D

α
t t

p =
Γ(p+1)

Γ(p+1−α) t
p−α. Hence, using the linearity of fractional Caputo derivative and its defi-

nition we get

C
0 D

α
t (t

pBi(t)) =
i∑

k=0

(
i

k

)
βi−k

C
0 D

α
t t

k+p

=
i∑

k=0

(
i

k

)
βi−k

Γ(k + p+ 1)

Γ(k + p+ 1− α)
tk+p−α. (3.3)
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Expanding the expression tk+p−α in terms of the Bernoulli polynomials implies

tk+p−α ≃
m̃∑
j=0

bjBj(t), (3.4)

where bj is the Bernoulli coefficient and can be computed according to Lemma 3.1 as

bj =
1

j!

∫ 1

0

dj

dtj
(tk+p−α)dt =

Γ(k + p− α+ 1)

j!Γ(k + p− α− j + 2)
.

Hence the fractional operational matrix of Bernoulli basis can be determined as

Aα,p
m,m̃ =


aα,p0,0 aα,p0,1 · · · aα,p0,m̃

aα,p1,0 aα,p1,1 · · · aα,p1,m̃
...

...
...

aα,pm,0 aα,pm,1 · · · aα,pm,m̃


(m+1)×(m̃+1)

, (3.5)

where

aα,pi,j =
i∑

k=0

(
i

k

)
βi−k

Γ(k + p+ 1)

j!Γ(k + p− α− j + 2)
, 0 ≤ i ≤ m, 0 ≤ j ≤ m̃. (3.6)

3.1. Function approximation. Consider Hm = span < B0(t), B1(t), ..., Bm(t) > be
a finite-dimensional closed subspace of the Hilbert space L2[0, 1] spanned by the
Bernoulli polynomials. The subspace Hm is complete [19]. Therefore an arbitrary
element g ∈ L2[0, 1] can be uniquely approximated by the subspace Hm, that is the
unique gm exists as

∥g − gm∥ ≤ ∥g − f∥, ∀f ∈ Hm. (3.7)

Now let the function g is expressed in terms of the subspace Hm as

g(t) ≃
m∑

k=0

ckBk(t), (3.8)

where ck are the Bernoulli coefficients. The following lemma indicates the coefficients
of an approximation by the Bernoulli polynomials.

Lemma 3.1. Let f ∈ L2[0, 1] be an arbitrary function and is estimated by the
truncated Bernoulli series as f(t) ≃

∑m
k=0 ckBk(t), then the coefficients ck for all

k = 0, 1, ...,m can be computed from the following relation

ck =
1

k!

∫ 1

0

f (k)(t)dt.

Proof. See [7]. □
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4. Problem statement and approximation method

The following nonlinear vector component fractional OCP is considered:

min J [x,u] =

∫ 1

0

f
(
t,x(t),C0 D

α
t x(t),u(t)

)
dt, (4.1)

subject to dynamical system constraints

I∑
i=1

Mix
(i)(t) +

J∑
j=1

Nj
C
0 D

αj

t x(t) = F (t,x(t)) + h(t)u(t), (4.2a)

x(i)(0) = xi
0, x(i)(1) = xi

1, 0 ≤ i ≤ n− 1, (4.2b)

where nj − 1 < αj ≤ nj and nj ∈ Z. The parameters Mi and Nj are real matrices
with appropriate dimensions which have columns same as the size of the state vector.
It is also assumed that n = max

j
{I, nj}, f is a continuous function and h is a nonzero

continuous function. Note that, since the approach is based on the direct solution of
FOCP rather than indirect one, the control input is assumed on the right hand side
of dynamical system with a nonzero coefficient function.

To solve the problem numerically, the spectral Ritz method is applied. This scheme
is to approximate the state and control functions in such a way that all the initial and
boundary conditions of the problem are initially met. Accordingly, by considering the
basis (3.2), the state function is approximated as

x(t) ≃ ϕ1(t)Y
mBm(t) + ϕ2(t), (4.3)

where ϕ2(t) is a function depending to initial and boundary conditions, namely,
ϕ2(t,x

0
0,x

1
0, ...,x

n−1
0 ,x0

1,x
1
1, ...,x

n−1
1 ) and Y m = [y0,y1, ...,ym] is the real unknown

matrix to be determined with each yi is a vector by the same size as x. The func-
tion ϕ1(t) shall be chosen such that the homogeneous initial-boundary conditions are
imposed, namely x(i)(0) = x(i)(1) = 0 and ϕ2(t) must be chosen such that the given
initial-boundary conditions of (4.2b) are met. So the trial function ϕ1(t) may be
selected as follows

ϕ1(t) =


tn if x(0) is known,

(1− t)n if x(1) is known,

tn(1− t)n if both x(0),x(1) are known.

(4.4)

On the other hand, our suggestion for the second trial function ϕ2(t) is the Hermite
polynomial interpolation acting on vectorized conditions.

Remark 4.1. It is remarkable that if the initial and boundary conditions consist of
just x(0) and x(1) without their known derivatives, the best choice for ϕ2(t) is stated
as: ϕ2(t) = x(0) if just x(0) is known, and the convex combination of the conditions
as ϕ2(t) = (1− t)x(0) + tx(1) if both of the x(0) and x(1) are known.
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Therefore, the estimated state function is computed by

xm(t) = tn(t− 1)nY mBm(t) + ϕ2(t)

=
n∑

k=0

(
n

k

)
(−1)ktn+kY mBm(t) + ϕ2(t). (4.5)

By considering the system dynamics (4.2), the control input can also be approximated
by

um(t) =
1

h(t)

( I∑
i=1

Mix
(i)
m (t) +

J∑
j=1

Nj
C
0 D

αj

t xm(t)− F (t,xm(t)

)
. (4.6)

Now we can substitute the approximated state and control function into the per-
formance index and then solve the resultant optimization problem. But since the
fractional and integer order derivatives of the basis appear in the control function,
it may cause some computational complexity. To overcome this issue, we apply a
new constructed fractional operational matrix (3.5). Hence, utilizing the operational
matrix on the control function (4.6) implies

ūm(t) =
1

h(t)

( I∑
i=1

Mi(
n∑

k=0

(
n

k

)
(−1)kY mAi,n+k

m,m̃ Bm̃(t) + ϕ
(i)
2 (t))

+
J∑

j=0

Nj(
n∑

k=0

(
n

k

)
(−1)kY mA

αj ,n+k
m,m̃ Bm̃(t) + C

0 D
αj

t ϕ2(t))

− F (t,xm(t))

)
. (4.7)

By computing the fractional derivative of the basis in the approximate functions via
operational matrix and substituting Eqs. (4.5) and (4.7) in the performance index
(4.1), the following nonlinear optimization problem is achieved:

min J̄ [Y m] =

∫ 1

0

f

(
t,

n∑
k=0

(
n

k

)
(−1)ktn+kY mBm(t) + ϕ2(t),

n∑
k=0

(
n

k

)
× (−1)kY mAα,n+k

m,m̃ Bm̃(t)) + C
0 D

α
t (ϕ2(t)),

1

h(t)

[ I∑
i=1

Mi(

n∑
k=0

(
n

k

)
(−1)kY mAi,n+k

m,m̃ Bm̃(t) + ϕ
(i)
2 (t))

+

J∑
j=0

Nj(

n∑
k=0

(
n

k

)
(−1)kY mA

αj ,n+k
m,m̃ Bm̃(t) + C

0 D
αj

t ϕ2(t))

− F (t,xm(t))

])
dt. (4.8)

The function on (4.8) is a nonlinear optimization problem of unconstrained one and
the following necessary conditions of optimality should be held by optimizing the Y m
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as

∂J̄

∂yij
[Y m] = 0, 0 ≤ i ≤ m. (4.9)

5. Theoretical analysis of the method

We define the error vector for Caputo fractional operational matrix of Bernoulli
polynomials as follows

Eα,p
m,m̃(t) = C

0 D
α
t (t

pBm(t))−Aα,p
m,m̃Bm̃(t)

=


C
0 D

α
t (t

pB0(t))−
∑m̃

j=0 a
α,p
0,j Bj(t)

C
0 D

α
t (t

pB1(t))−
∑m̃

j=0 a
α,p
1,j Bj(t)

...
C
0 D

α
t (t

pBm(t))−
∑m̃

j=0 a
α,p
m,jBj(t)

 =


eα,p0,m̃(t)

eα,p1,m̃(t)
...

eα,pm,m̃(t)

 . (5.1)

On the other hand, by considering relation (3.4) we get∥∥∥∥∥∥tk+p−α −
m̃∑
j=0

bjBj(t)

∥∥∥∥∥∥
2

2

=
G
(
tk+p−α, B0(t), B1(t), ..., Bm̃(t)

)
G (B0(t), B1(t), ..., Bm̃(t))

, (5.2)

where G is the Gram determinant [19]. Hence using Eqs. (5.2) and (3.3) we have

∥eα,pi,m̃∥2 =

∥∥∥∥∥∥C0 Dα
t (t

pBi(t))−
m̃∑
j=0

aα,pi,j Bj(t)

∥∥∥∥∥∥
2

≤
i∑

k=0

(
i

k

)
|βi−k|

Γ(k + p+ 1)

Γ(k + p+ 1− α)

×

(
G
(
tk+p−α, B0(t), B1(t), ..., Bm̃(t)

)
G (B0(t), B1(t), ..., Bm̃(t))

)1/2

, 0 ≤ i ≤ m. (5.3)

Therefore an error upper bound for the fractional Caputo operational matrix is deter-
mined. By increasing the number of Bernoulli basis, the fractional operational matrix
converges to fractional derivative of the basis.

Now Consider the main problem (4.1). By computing the control function from
the system dynamics, the problem is converted into equivalent problem as

min J [x] =

∫ 1

0

f

(
t,x(t),C0 D

α
t x(t),

1

h(t)

( I∑
i=1

Mix
(i)(t)

+

J∑
j=1

Nj
C
0 D

αj

t x(t)− F (t,x(t))

))
dt

:=

∫ 1

0

W
(
t,x(t), ...,x(n)(t),C0 D

α1
t x(t), ...,C0 D

αJ
t x(t)

)
dt. (5.4)
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Let n = max
j

{I, αj}. We define the space Cn[0, 1] as

Cn[0, 1] = {x | x is continuous up to nth derivative} (5.5)

equipped with the following norm

∥x∥ =
n∑

j=0

∥x(j)∥∞. (5.6)

Theorem 5.1. Let x ∈ Cn[0, 1]. The defined functional on (5.4) is uniformly con-
tinuous.

Proof. Considering the fractional derivative and norm definition for αj > 0 we get

∥C0 D
αj

t x∥∞ ≤ 1

Γ(nj − αj)

∫ t

0

(t− τ)nj−αj−1∥x(nj)∥∞dτ

≤ ∥x(nj)∥∞
Γ(nj − αj + 1)

. (5.7)

Let ϵ > 0 and δ > 0 be arbitrary. Assume y ∈ Cn[0, 1] such that

∥x− y∥ =

n∑
j=0

∥x(j) − y(j)∥∞ < δ. (5.8)

Regarding (5.7) we get

∥C0 D
αj

t x− C
0 D

αj

t y∥∞ ≤ ∥x(nj) − y(nj)∥∞
Γ(nj − αj + 1)

. (5.9)

According to the assumption of fractional OCP (4.1), the function W defined on (5.4)
is continuous, hence for sufficiently small values of δ > 0, we get

∥W
(
t,x(t), ...,x(I)(t),C0 D

α1
t x(t), ...,C0 D

αJ
t x(t)

)
−W

(
t,y(t), ...,y(I)(t),C0 D

α1
t y(t), ...,C0 D

αJ
t y(t)

)
∥∞ < ϵ, (5.10)

provided that ∥x− y∥ < δ. Therefore we have

|J [x]− J [y]| < ϵ.

□

Now we state the main theorem about the convergence of functional to its optimum
value by increasing the Bernoulli basis order.

Theorem 5.2. Let Pm[0, 1] be the subspace of Cn[0, 1] spanned by the first m + 1
Bernoulli polynomials and ν be the minimum of the functional J on Cn[0, 1]. If νm
is the optimum of J on Cn[0, 1] ∩ Pm[0, 1], then

lim
m→∞

νm = ν.
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Proof. ϵ > 0 is given. Let x∗(t) ∈ Cn[0, 1] be a function satisfying the following
relation

J [x∗] < ν + ϵ.

Because of infimum properties, the existence of such function is obvious. Considering
Theorem 5.1, for x ∈ Cn[0, 1], the relation ∥x− x∗∥ < δ implies

|J [x]− J [x∗]| < ϵ

Since the set of the Bernoulli polynomials {Bk(t)}∞k=0 are dense in the complete space
L2[0, 1] [45], so for sufficiently large m ∈ N, there is a function xm such that ∥xm −
x∥ < δ. Hence referring to continuity of the functional J , we get |J [x∗]− J [xm]| < ϵ.
Denoted J [xm] by νm, we get

ν ≤ νm = |J [xm]− J [x∗] + J [x∗]| ≤ |J [x∗]|+ |J [xm]− J [x∗]| ≤ ν + 2ϵ.

Because ϵ is arbitrary, as a result we conclude

lim
m→∞

νm = ν.

□

6. Illustrative test problems

In this section, to show the application of the proposed method, several illustrative
test problems are provided.

Example 6.1. Assume the following fractional optimal control problem given in [38]

min J [x, u] =
1

2

∫ 1

0

(x2(t) + u2(t))dt,

subject to
C
0 D

α
t x(t) = −x(t) + u(t), 0 ≤ t ≤ 1,

and the initial and boundary conditions as

x(0) = 0, x(1) = 2.

The exact solution of this problem for α = 1 is as

x∗(t) =
2 sinh 2t

sinh 2
, u∗(t) =

2(sinh 2t+ 2 cosh 2t)

sinh 2
.

Considering the proposed numerical scheme, the state function is approximated as

xm(t) = t(t− 1)Y mBm(t) + 2t,

and by regarding the system dynamics and taking the fractional operational matrix
into account, the estimated control input is computed by

ūm(t) =

Y m(Aα,2
m,m̃ −Aα,1

m,m̃)Bm̃(t) +
2

Γ(2− α)
t2−α + (t2 − t)Y mBm(t) + 2t.

By substituting the approximate functions into the cost function, a nonlinear opti-
mization problem is obtained. In Table 1, the optimal cost function for the present
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method and another method in the literature are displayed. In comparison with that
method, by selecting a small number of the basis, the optimal value is obtained. Fig-
ures 1 and 2 depicts the exact and the numerical solutions of the problem for integer
order and two different values of the fractional order α.

Table 1. The optimal cost function for different values of m, m̃ with
different methods in Example 6.1

Numerical Method Method of [38] Present study

Optimal cost function (J∗) 6.149258977 (m=5) 6.149258977 (m = 3, m̃=3)
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Figure 1. Plots of the exact and the numerical state functions for α =
1, 0.9, 0.8 and m = m̃ = 4 in Example 6.1
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Figure 2. Plots of the exact and the numerical control functions for
α = 1, 0.9, 0.8 and m = m̃ = 4 in Example 6.1
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Example 6.2. Consider the following fractional optimal control problem as [3, 23]

min J [x, u] =

∫ 1

0

[
(x1(t)− t

3
2 − 1)2 + (x2(t)− t

5
2 )2 + (u(t)− 3

√
π

4
t+ t

5
2 )2
]
dt,

subject to the given constraint(
1 0
0 1

)
C
0 D

1
2
t x(t)−

(
0 1
1 0

)
x(t) =

(
0

15
√
π

16 t2 − t
3
2 − 1

)
+

(
u(t)
0

)
,

x(0) =

(
1

0

)
,

where x(t) =

[
x1(t)
x2(t)

]
.

The exact state and control functions of this problem are as

x∗(t) =

(
1 + t

3
2

t
5
2

)
, u∗(t) =

3
√
π

4
t− t

5
2 .

To solve the problem numerically by the proposed spectral method and considering
Hermite polynomial interpolation, two components of the state function are approxi-
mated as

xm(t) = tY mBm(t) +

(
1

0

)
,

where Y m =

[
Y m
1

Y m
2

]
is the unknown coefficient matrix to be determined. By substi-

tuting the estimated state function into the system dynamics, the control function is
approximated as

um(t) = C
0 D

1
2
t (x1(t) + x2(t))− x1(t)− x2(t) + t

3
2 − 15

√
π

16
t2 + 1.

As stated, to reduce the computational complexity on the estimated control function,
we applied the fractional and integer order operational derivative matrix. Conse-
quently the control function is simplified as

ūm(t) =(Y m
1 + Y m

2 )A0.5,1
m,m̃Bm̃(t)− t(Y m

1 + Y m
2 )Bm(t)

+ t
3
2 − 15

√
π

16
t2 + 1.

By taking m = m̃ = 5 and the zero matrix of dimension 2 × 6 as starting point for
the Newton’s method, after 7 iteration we get

Y 5(7) =

[
0.6698 0.8389 −0.6582 0.6333 −0.5888 0.1391
0.3987 1.0307 0.4872 0.2566 −0.1722 0.6564

]
.

By substituting this matrix into the estimated function, the approximate state and
control functions can be identified. Figures 3–6 depict the exact and estimated state
and control functions which demonstrate coincidence of the exact solution and the
numerical solutions to each other. In Table 2, the optimal cost function for the
Epsilon-Ritz method and present study are presented and compared.
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Consequently, the superiority of the proposed method is clarified. The effects of
increasing the number of basis functions, m, over the optimal cost function is also de-
picted in the results of Table 2. It is remarkable that many real-world optimal control
problems have no exact solution at hand analytically. To apply the proposed method
on such problems, the effect of cost function improvement as well as the solutions
convergence with different basis order is an alternative approach to test. Therefore,
we take the logarithm of the two subsequent solutions to verify the method for such
a condition. Figure 6 depicts the logarithmic improvement of the two subsequent
solutions.

Table 2. The optimal cost function for different values of m and m̃ = 6
with different methods for Example 6.2

Method Epsilon-Ritz [23] Present study

1.01378× 10−4 (k=3, ϵ=0.01) 1.82793964× 10−5 (m=2)
Optimal cost function 5.3424× 10−5 (k=5, ϵ=0.001) 7.90498552× 10−7 (m=5)

8.0027× 10−6 (k=8, ϵ=0.0001) 9.41573213× 10−8 (m=8)
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Figure 3. The exact solution and the numerical state function (x1(t))
with m = 6, m̃ = 8 in Example 6.2

Example 6.3. Assume the following fractional optimal control problem with variable
fractional order given in [48]

min J [x, u] =

∫ 1

0

(
x1(t) + x2(t)−

2t

α+ 3
u(t)

)2

dt,

subject to the dynamical system constraint as(
1 1
0 1

)
ẋ(t) +

(
1 0
0 1

)
C
0 D

α
t x(t) =

(
t3

t3

)
+

(
2
1

)
u(t),

with the given initial and boundary conditions as x(0) =

(
0
0

)
, x(1) =

(
6

Γ(α+4)
6

Γ(α+4)

)
.
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Figure 4. The exact solution and the numerical state function (x2(t))
with m = 6, m̃ = 8 in Example 6.2
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Figure 5. The exact solution and the numerical control input with m =
6, m̃ = 8 in Example 6.2

The exact state and control functions minimizing the performance index are as
follows

x∗(t) =

(
6tα+3

Γ(α+4)
6tα+3

Γ(α+4)

)
, u∗(t) =

6tα+2

Γ(α+ 3)
.

To solve the problem numerically by the proposed spectral method and considering
Hermite polynomial interpolation, two components of the state function are approxi-
mated as

xm(t) = t(t− 1)Y mBm(t) +

(
6t

Γ(α+4)
6t

Γ(α+4)

)
,

where Y m =

[
Y m
1

Y m
2

]
are the unknown coefficient matrix to be determined. By substi-

tuting the estimated state function into the system dynamics, the control function is
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Figure 6. The logarithmic improvement of the cost function versus poly-
nomial order with m = m̃ in Example 6.2

approximated as

um(t) = ẋ1(t) +
C
0 D

α
t ẋ1(t)− C

0 D
α
t ẋ2(t).

By applying the fractional operational derivative matrix, the control function is sim-
plified as

ūm(t) =Y m
1 (A1,2

m,m̃ −A1,1
m,m̃)Bm̃(t) + Y m

1 (Aα,2
m,m̃ −Aα,1

m,m̃)Bm̃(t)

− Y m
2 (Aα,2

m,m̃ −Aα,1
m,m̃)Bm̃(t) +

6

Γ(α+ 4)
. (6.1)

By manipulating Eq. (6.1), we get

ūm(t) =Y m
1 (A1,2

m,m̃ −A1,1
m,m̃)Bm̃(t)

+ (Y m
1 − Y m

2 )(Aα,2
m,m̃ −Aα,1

m,m̃)Bm̃(t) +
6

Γ(α+ 4)
.

by substituting the estimated functions into the cost function, the unknown coefficient
matrix are obtained. Table 3 presents the absolute error for the state vector by
increasing the approximation order where the approximate solution converges to exact
solution of the problem. Figures 7 and 8 depict the exact and numerical state functions
for different values of fractional order α = 0.7, 1, 1.8. Furthermore, Figure 9 depicts
the optimal control input for different choices of fractional order. As evident, the
exact and numerical solutions are coincide each other for different values of fractional
order with high accurate decision. By increasing the number of basis order m, the
absolute error of the solution is also altered.

Example 6.4. Consider the following fractional optimal control problem

min J [x,u] =∫ 1

0

(
(t

3
2x1(t)− x2(t)− 1)2 + (2tu1(t) +

35

2
t
3
2 − 7u2(t)−

15
√
π

8
t3)2

)
dt,
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Table 3. The absolute error ∥x∗−xm∥∞ and ∥u∗−um∥∞ with different
values of m = m̃ in Example 6.3

∥x∗ − xm∥∞ ∥u∗ − um∥∞

t m = 1 m = 3 m = 8 m = 11 m = 11
0 0 0 0 0 3.59017 ×10−6

0.1 3.28346×10−3 5.12710×10−5 4.55978×10−8 1.01628×10−8 4.05691 ×10−8

0.2 7.06115×10−3 4.39807×10−5 4.63290×10−8 1.00189×10−8 1.96347 ×10−8

0.3 9.68796×10−3 5.66568×10−6 4.65423×10−8 6.47133×10−8 1.11622 ×10−8

0.4 1.02825×10−2 1.89133×10−5 9.06090×10−8 9.05742×10−9 1.06974 ×10−8

0.5 8.63186×10−3 1.04993×10−5 4.62760×10−8 3.18470×10−9 1.54917 ×10−8

0.6 5.13418×10−3 1.98290×10−5 8.46870×10−9 9.40608×10−9 1.72286 ×10−8

0.7 7.58144×10−4 4.27898×10−5 9.08595×10−8 2.38176×10−9 1.97583 ×10−8

0.8 2.98775×10−3 3.26659×10−5 3.94343×10−8 8.36313×10−9 1.81963 ×10−8

0.9 4.07992×10−3 4.75873×10−6 1.00529×10−7 1.02494×10−9 7.25227 ×10−9

1 0 0 0 0 8.16531 ×10−8
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Figure 7. Plots of the exact and numerical state function (x1(t)) for
α = 0.7, 1, 1.8 and m = m̃ = 3 in Example 6.3

subject to the dynamical system constraint as

M ẋ(t) +N1
C
0 D

3
2
t x(t) +N2

C
0 D

1
2
t x(t) =

(
0

15
√
π

8 t

)
+ u(t),

with the given initial and boundary conditions as

x(0) =

(
0
−1

)
, x(1) =

(
1
0

)
,

where x(t) =

[
x1(t)
x2(t)

]
, u(t) =

[
u1(t)
u2(t)

]
, M =

(
0 0
1 0

)
, N1 =

(
0 1
1 0

)
and N2 =(

1 0
0 1

)
.



462 V. TAHERPOUR, M. NAZARI, AND A. NEMATI

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

State function

x 2(t
)

 

 

Numerical (α=0.7)

Exact (α=0.7)

Numerical (α=1)

Exact (α=1)

Numerical (α=1.8)

Exact (α=1.8)

Figure 8. Plots of exact and numerical state function (x2(t)) for α =
0.7, 1, 1.8 and m = m̃ = 3 in Example 6.3
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Figure 9. Plots of the exact and numerical control input function for
α = 0.7, 1, 1.8 and m = m̃ = 3 in Example 6.3

For the above problem, the optimizer functions satisfying the initial and boundary
functions are as

x∗(t) =

(
t
5
2

t4 − 1

)
, u∗(t) =

(
64

5
√
π
t
5
2 + 15

√
π

16 t2

128
35

√
π
t
7
2 + 5

2 t
3
2

)
.

Using the presented method, the approximate functions are determined as:

xm(t) = t(t− 1)Y mBm(t) +

(
t

t− 1

)
.

The approximate control input by regarding the system dynamic is

ūm(t) =MY m(A1,2
m,m̃ −A1,1

m,m̃)Bm̃(t) +N1Y
m(A1.5,2

m,m̃ −A1.5,1
m,m̃)Bm̃(t)

+N2Y
m[(A0.5,2

m,m̃ −A0.5,1
m,m̃)Bm̃(t) +

(
1

1

)
1

2

√
t

π
]−
(

0
15

√
π

8 t

)
.



CMDE Vol. 9, No. 2, 2021, pp. 446-466 463

Table 4 displays the optimal performance index (J∗) in terms of the polynomial order.

Table 4. The cost function with different values of m, m̃ in Example 6.4

Polynomial Order m = 2, m̃ = 3 m = 5, m̃ = 5 m = 8, m̃ = 9 m = 11, m̃ = 13

Optimal Cost function 0.0183940 0.0142326 4.70911048× 10−4 2.0854212× 10−6

Obviously, by increasing the order of Bernoulli polynomials m, the cost function is
consequently improved. The state function and control input are also depicted in
Figures 10–12, respectively.
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Figure 10. The exact and the numerical state function (x1(t)) with
m = 6, m̃ = 7 in Example 6.4
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Figure 11. The exact and the numerical state function (x2(t)) with
m = 6, m̃ = 7 in Example 6.4
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Figure 12. The exact and numerical control input (u2(t)) with m =
6, m̃ = 7 in Example 6.4

7. Conclusion

In this article, a numerical solution of FOCP based on Caputo fractional derivative
was established. The method is to convert the problem to its equivalent problem then
approximate it using Bernoulli polynomial basis and its fractional operational matrix.
The approximate spectral method has a good property satisfying all the initial and
boundary conditions. Next, the derived problem was solved by the Newton’s itera-
tive method. Moreover, the convergence analysis of the new method is investigated.
Finally, to show the effectiveness and applicability of the proposed scheme, four test
problems were included and compared with the other methods of the literature to
emphasis the fast and efficient convergence of the proposed methodology.
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