تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,021 |
تعداد مشاهده مقاله | 52,491,587 |
تعداد دریافت فایل اصل مقاله | 15,218,423 |
Hyperbolic Ricci-Bourguignon flow | ||
Computational Methods for Differential Equations | ||
مقاله 6، دوره 9، شماره 2، تیر 2021، صفحه 399-409 اصل مقاله (299.15 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2020.34205.1566 | ||
نویسنده | ||
Shahroud Azami* | ||
Department of pure Mathematics, Faculty of Sciences Imam Khomeini International University, Qazvin, Iran. | ||
چکیده | ||
In this paper, we consider the hyperbolic Ricci-Bourguignon flow on a compact manifold M and show that this flow has a unique solution on short-time with imposing on initial conditions. After then, we find evolution equations for Riemannian curvature tensor, Ricci curvature tensor and scalar curvature of M under this flow. In the final section, we give some examples of this flow on some compact manifolds. | ||
کلیدواژهها | ||
Geometric flow؛ Hyperbolic equation؛ Strictly hyperbolicity | ||
آمار تعداد مشاهده مقاله: 390 تعداد دریافت فایل اصل مقاله: 353 |