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Abstract In this paper, we present a nonlinear parametric method to stabilize descriptor frac-

tional discrete-time linear system practically. Parametric methods with the free
parameters can be adjusted to obtain better performance responses like minimum
norm in state feedback. The aim is assigning desirable eigenvalues to obtain sat-

isfactory responses by forward state feedback and forward and propositional state
feedback in new systems with large matrices. However, finding the solution to non-
linear parametric equations makes some errors. In partial eigenvalue assignment,
just a part of the open-loop spectrum of the standard linear systems is reassigned,

while leaving the rest of the spectrum invariant. The size of matrices, state, and
input vectors are decreased and the stability is kept. At the end, summary and con-
clusions are proposed and the convergence of state vectors in the descriptor fractional
discrete-time system to zero is also shown by figures in a numerical example. Our

method is also compared with another method with one of orthogonality relations
in our article and example.

Keywords. Descriptor fractional discrete-time, Nonlinear equations, Parametric state feedback, Partial

eigenvalue assignment.
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1. Introduction

As numerous studies show, fractional-order models can depict the physical plant
better than the classical integer-order ones. Fractional derivatives provide an excellent
instrument for the description of memory and hereditary properties of various mate-
rials and processes like viscoelastic systems, chaotic synchronization, electromagnetic
systems, electrical circuits theory, fractances, mechatronics systems, signal process-
ing, and chemical mixing [1, 2, 8, 13, 16, 17]. Descriptor fractional systems describe
a large class of systems, which are not only theoretically interesting, but they also
have a great importance in practice. It is fair to say that descriptor fractional models
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give a more complete class of dynamical models than the conventional state-space
systems.
In this article, the descriptor fractional discrete-time linear system is converted to
the standard descriptor model with unlimited delay in state by the fractional deriv-
ative definition whose control is impossible. Decreasing the sequence of coefficients
of delays and defining a new state vector may help us obtain a standard descriptor
discrete-time linear system, but with large matrices. We may find several methods for
stability of just positive standard and descriptor systems. Some of them were derived
by the use of Drazin inverse [5] and Shuffle algorithm [9] in which some initial con-
ditions like having full row rank matrices in every performed algorithm and finding
index of Shuffle and Drazin in pointed papers are necessary.
The free parameters which do not affect the time-optimality can be adjusted to ob-
tain better performance responses. We compare some methods via parametric forward
state matrix, parametric forward and propositional state matrix, partial eigenvalue
assignment by parametric forward and propositional state feedback, and partial eigen-
value assignment using orthogonality relations to stabilize the standard descriptor
discrete-time linear systems. To gain forward and propositional state feedback matri-
ces, two standard linear systems need to exist. Assigned nonzero arbitrary eigenvalue
to the first standard system and assigning inverted the desired eigenvalue for the
standard descriptor system to the second one, desired eigenvalues are assigned to the
standard descriptor linear system. Using forward and propositional state feedback
matrices may not need a full rank open-loop matrix in the standard descriptor sys-
tems when forward state feedback matrix is used. Reassigning undesired eigenvalues
of open-loop spectrums in new systems with smaller sizes of matrices such that other
eigenvalues unchanged is well-done by the use of partial eigenvalue assignment. Like-
wise, we do not deal with some sufficient conditions like no having eigenvalues near
zero and being distinct eigenvalues using orthogonality relations [15].

2. Statement of the problem

Consider the descriptor fractional discrete-time linear system described by

E∆αxk+1 = Axk +Buk, k ∈ Z+ = {0, 1, 2, · · · }, (2.1)

where α is fractional-order difference of state vector and 0 < α < 1, xk ∈ Rn and uk ∈
Rm are state and input vectors, the matrices E ∈ Rn×n, A ∈ Rn×n, and B ∈ Rn×m

are known constant matrices with rank(E) < n, rank(B) = m which 1 ≤ m ≤ n ,
and x0 is a nonzero definite vector.

Definition 2.1. The descriptor fractional system (2.1) is called asymptotically stable
if and only if limk→∞ xk = 0 for any x0 ∈ Rn.

Definition 2.2. The Grunwald-Letnikov fractional derivative with fractional-order
α is defined by,

GLD
α
a,tx(t) = lim

h→0
h−α

[ t−a
h ]∑

i=0

(−1)i
(
α

i

)
x(t− ih), (2.2)
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where [.] means the integer part, α ∈ R+, and(
α

i

)
=

{
1 for i= 0
α(α−1)···(α−i+1)

i! for i= 1, 2, ...
(2.3)

Definition 2.3. The fractional difference of the order α ∈ R+ with zero initial point
in discrete-time systems is defined by [4]

∆αx(tk) = ∆αxk =
k∑

i=0

(−1)i
(
α

i

)
xk−i. (2.4)

Theorem 2.4. For n ∈ N, 0 < α < 1 we have [12]

Dn+αx(t) = DnDαx(t). (2.5)

We can easily assume 0 < α < 1 by this theorem.

Using the definition 2.3, we may write the equations (2.1) in the form

Exk+1 = Aαxk +
k∑

i=1

ciExk−i +Buk, (2.6)

which

ci = ci(α) = (−1)i
(

α

i+ 1

)
, i = 1, 2, · · · , k (2.7)

and Aα = A+ αE. Also
(

α
i+1

)
is defined by (2.3).

Note that the equation (2.6) describes a linear discrete-time descriptor system with
unlimited delay in state. To make the control of this system possible, we should
change it to standard descriptor linear system. Although the converted standard
descriptor linear systems may have large matrices, but stability of them is proved [3].

3. Stability of descriptor fractional discrete-time linear systems

The coefficients ci in (2.7) strongly decrease for increasing i when 0 < α < 1.
Assuming ci = 0 for i > L the system (2.6) is changed to a descriptor linear system
with L delays [4]

Exk+1 = Aαxk +
L∑

i=1

ciExk−i +Buk. (3.1)

Now by defining the new state vector Xk ∈ Rn̄

Xk =


xk

xk−1

xk−2

...
xk−L

 , (3.2)
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which n̄ = n(L + 1), we may convert the time delay descriptor system (3.1) to a
standard descriptor system

ĒXk+1 = ĀXk + B̄Uk, (3.3)

where

Ā =


Aα c1E c2E · · · cLE
I 0 0 · · · 0
0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0

 , B̄ =


B
0
0
...
0

 ,

Ē =


E 0 0 · · · 0
0 I 0 · · · 0
0 0 I · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 I

 , (3.4)

where Uk = uk ∈ Rm is the input vector, Ē, Ā ∈ Rn̄×n̄, B̄ ∈ Rn̄×m, and rank(Ē) < n̄.

Definition 3.1. The descriptor fractional system (2.1) is called practically stable if
and only if the time delay system (3.1) or equivalently the system (3.3) is asymptot-
ically stable [4].

3.1. Eigenvalue assignment with forward state feedback law. Consider system
(3.3) by forward state feedback law

Uk = F ′
fXk+1. (3.5)

The aim is to design the forward state feedback (3.5) which produces a closed-loop
system of (3.3) with the satisfactory response by assigning desirable eigenvalues Ω =
{λ1, λ2, · · · , λn̄}, where λi ∈ C, λi ̸= 0, and are self-conjugate complex numbers for
i = 1, 2, · · · , n̄.
To establish the proposed results, consider the following assumptions

I)rank[Ē|B̄] = n̄, II)rank[Ā] = n̄, III)rank[B̄] = m. (3.6)

If assumption (I) holds, then there exists F ′
f such that [3]

rank[Ē − B̄F ′
f ] = n̄. (3.7)

Substituting feedback (3.5) into the equation (3.3), one can write

ĒXk+1 = ĀXk + B̄F ′
fXk+1 ⇒ (Ē − B̄F ′

f )Xk+1 = ĀXk

. therefore

Xk+1 = (Ē − B̄F ′
f )

−1ĀXk, (3.8)

is a standard linear system which is well-defined by (3.7).

Theorem 3.2. The standard descriptor discrete-time linear system (3.8) is asymp-
totically stable if and only if eigenvalues of (Ē − B̄F ′

f )
−1Ā lie in the unit disk [7].
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Lemma 3.3. Consider a matrix M ∈ Rn×n with rank(M) = n and the eigenvalues
equal to λ1, λ2, · · · , λn. Then, the eigenvalues of M−1 are λ−1

1 , λ−1
2 , · · · , λ−1

n [10, 11].

Theorem 3.4. Define the matrices N , M as

N = Ā−1Ē, M = −Ā−1B̄, (3.9)

such that the pair of (M,N) be controllable. Also let F ′
f be state feedback matrix, such

that {λ−1
1 , λ−1

2 , · · · , λ−1
n̄ } is the set of eigenvalues of the closed-loop system{

zk+1 = Nzk +Mwk,
wk = F ′

fzk,
(3.10)

where λi ∈ C and λi ̸= 0, i = 1, 2, · · · , n̄, are arbitrarily assigned. Then for this gained
F ′
f , the desired spectrum Ω = {λ1, λ2, · · · , λn̄} is the eigenvalues of the controlled

system (3.3) with forward feedback (3.5) and also, the condition (3.7) holds.

Proof. Considering that (M,N) is controlled, then one can find a state feedback
matrix F ′

f such that the controlled system (3.10) given by

zk+1 = (N +MF ′
f )zk (3.11)

has eigenvalues equal to λ−1
1 , λ−1

2 , · · · , λ−1
n̄ . Now by (3.9) note that:

N +MF ′
f = Ā−1(Ē − B̄F ′

f ) (3.12)

so

(N +MF ′
f )

−1 = (Ē − B̄F ′
f )

−1Ā. (3.13)

The closed-loop matrices of systems (3.10) and (3.3) via feedback law (3.5) are inverse
of each other by (3.8), (3.11), (3.12), and (3.13). Therefore (3.7) holds and the set
of eigenvalue of closed-loop system (3.3) with feedback law (3.5) is equal to Ω =
{λ1, λ2, · · · , λn̄} by lemma 3.3. □

Remark 3.5. By the definitions (3.4), the matrices Ē and Ā in system (3.3) are
singular because rank(E) < n is the necessary condition in the descriptor fractional
discrete-time linear system (2.1) and the matrix including last n columns and first n
rows of Ā, i.e. [cLE], is not full rank. So the method in subsection 3.1 can not help
us stabilize the system (2.1).

The method based on using forward state feedback when Ā is singular, i.e. the
condition (II) in (3.6) is not satisfied is not applicable. This problem is removed in
next subsection.

3.2. Eigenvalue assignment with forward and propositional state feedback
law. When we use the forward and propositional state feedback instead of the forward
state feedback, we do not need the condition of being full rank of matrix Ā in system
(3.3). It is excellent for using forward and propositional state feedback.

Consider system (3.3) by forward and propositional state feedback law

Uk = FfXk+1 + FpXk. (3.14)
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The aim is to design the forward and propositional state feedback (3.14) which pro-
duces a closed-loop system of (3.3) with the satisfactory response by assigning desir-
able eigenvalues Ω = {λ1, λ2, · · · , λn̄}, where λi ∈ C, λi ̸= 0, and are self-conjugate
complex numbers for i = 1, 2, · · · , n̄.
To establish the proposed results, consider the following assumptions

I)rank[Ē|B̄] = n̄, II)rank[B̄] = m.

If assumption (I) holds, then there exists Ff such that [3]

rank[Ē − B̄Ff ] = n̄. (3.15)

Substituting feedback (3.14) into the equation (3.3), one can write

ĒXk+1 = ĀXk + B̄FfXk+1 + B̄FpXk ⇒ (Ē − B̄Ff )Xk+1 = (Ā+ B̄Fp)Xk

, therefore

Xk+1 = (Ē − B̄Ff )
−1(Ā+ B̄Fp)Xk, (3.16)

is a standard linear system which is well-defined by (3.15).

Theorem 3.6. The standard descriptor discrete-time linear system (3.16) is asymp-
totically stable if and only if eigenvalues of (Ē− B̄Ff )

−1(Ā+ B̄Fp) lie in the unit disk
[7].

Obtaining propositional and forward state feedbacks Fp and Ff , first, the proposi-
tional feedback matrix Fp is obtained by assigning non-zero arbitrary eigenvalues to
the closed-loop of system{

qk+1 = Āqk + B̄vk,
vk = Fpqk.

(3.17)

Then, we obtain the forward state feedback matrix Ff , by assigning {λ−1
1 , λ−1

2 , · · · ,
λ−1
n̄ } to the system (3.19), where λi ∈ C, λi ̸= 0 are self-conjugate complex numbers

for i = 1, 2, · · · , n̄, and Ω = {λ1, λ2, · · · , λn̄} is the set of desired eigenvalues for the
standard descriptor system (3.3) via state feedback (3.14).

Theorem 3.7. Define the matrices N , M as

N = (Ā+ B̄Fp)
−1Ē, M = −(Ā+ B̄Fp)

−1B̄, (3.18)

such that the pair of (M,N) be controllable. Also let Ff be state feedback matrix, such

that {λ−1
1 , λ−1

2 , · · · , λ−1
n̄ } is the set of eigenvalues of the closed-loop system

{
zk+1 = Nzk +Mwk,

wk = Ffzk,
(3.19)

where λi ∈ C and λi ̸= 0, i = 1, 2, · · · , n̄, are arbitrarily assigned. Then for this
gained Ff , the desired spectrum Ω = {λ1, λ2, · · · , λn̄} includes the eigenvalues of the
controlled system (3.3) with forward and propositional feedback (3.14) and also, the
condition (3.15) holds.
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Proof. Considering that (M,N) is controlled, then one can find a state feedback
matrix Ff such that the controlled system (3.19) given by

zk+1 = (N +MFf )zk, (3.20)

has eigenvalues equal to {λ−1
1 , λ−1

2 , · · · , λ−1
n̄ }. Now by (3.18) note that:

N +MFf = (Ā+ B̄Fp)
−1(Ē − B̄Ff ), (3.21)

so

(N +MFf )
−1 = (Ē − B̄Ff )

−1(Ā+ B̄Fp). (3.22)

The closed-loop matrices of systems (3.20) and (3.3) via feedback law (3.14) are
inverse of each other by (3.8), (3.20), (3.21), and (3.22). Therefore (3.15) holds and
the set of eigenvalues of closed-loop system (3.3) with feedback law (3.14) is equal to
Ω = {λ1, λ2, · · · , λn̄} by lemma 3.3. □

3.3. Eigenvalue assignment by nonlinear parametric similarity transforma-
tion. In this subsection, we use the method of parametric similarity transformation
to compute the forward state feedback matrices F ′

f and Ff in subsections 3.1 and
3.2. Our assignment procedure is composed of two stages. First, we obtain a primary
state feedback matrix Φ which assigns all the eigenvalues of closed-loop system to
zero. Then, we produce a state feedback matrix F which assigns all the closed-loop
system eigenvalues in desired region. Consider controllable standard system{

xk+1 = A1xk +B1uk,
uk = Fxk

(3.23)

and the state transformation

xk = T x̃k, (3.24)

where T can be obtained by elementary similarity operations as described in [10, 11].
Substituting (3.24) into (3.23) yields

x̃k+1 = T−1A1T x̃k + T−1B1uk.

It is noted that the transformation matrix T is invertible. In this way,

Ã1 = T−1A1T, B̃1 = T−1B1, (3.25)

are in a compact canonical form known as vector companion form:

Ã1 =

[
G0

In−m , 0n−m,m

]
, B̃1 =

[
S0

0n−m,m

]
. (3.26)

Here G0 is a m× n matrix and S0 is a m×m upper triangular matrix.
The state feedback matrix which assigns all the eigenvalues to zero, for the trans-

formed pair (B̃1, Ã1), is then chosen as

Φ̃ = −S−1
0 G0, (3.27)

which results in the primary state feedback matrix for the pair (B1, A1) defined as

Φ = Φ̃T−1. (3.28)
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The transformed closed-loop matrix

Γ̃0 = Ã1 + B̃1Φ̃, (3.29)

assumes a compact Jordan form with zero eigenvalues

Γ̃0 =

[
0m,n

In−m , 0n−m,m

]
. (3.30)

If Ãλ is any matrix in vector companion form, i.e.

Ãλ =

[
Gλ

In−m , 0n−m,m

]
, (3.31)

with the eigenvalue spectrum {λ1, λ2, · · · , λn} containing a set of self conjugate eigen-
values, then as shown in [10, 11]

F̃ = S−1
0 (−G0 +Gλ), (3.32)

is the feedback matrix which assigns the eigenvalue spectrum to the closed-loop matrix
Γ̃ = Ã1 + B̃1F̃ , and F may then be obtained by

F = F̃ T−1. (3.33)

Note that Gλ is an m× n parametric matrix in the form:

Gλ =


g11 g12 · · · g1n
g21 g22 · · · g2n
· · · · · · · · · · · ·
gm1 gm2 · · · gmn

 . (3.34)

To obtain the nonlinear system of equations relating the parameters of Gλ, the
characteristic polynomial of Ãλ must be obtained. Thus, let

det(Ãλ − λI) = Pn(λ) = 0, (3.35)

where

Pn(λ) = (−1)n(λn + a1λ
n−1 + ...+ an−1λ+ an), (3.36)

is the characteristic polynomial of the closed-loop system. Since it is required that
the zeros of this polynomial lie in the set {λ1, λ2, · · · , λn}, it is clear that

Pn(λ) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn). (3.37)

Remark 3.8. Obtaining the roots of the characteristic polynomial we may consider
following equations

a1 = −
∑n

i=1 λi,
a2 =

∑n
i,j=1,i<j λiλj ,

...
ak = (−1)k

∑n
i1,i2,...ik=1,i1<i2<...<ik

λi1λi2 · · ·λik ,
...
an = (−1)n

∏n
i λi.

(3.38)
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Now by equating the coefficients of the characteristic polynomial as (3.38), the
following nonlinear system of equations is obtained:

f1(g11, · · · , gmn) = a1,
f2(g11, · · · , gmn) = a2,
...
fn(g11, · · · , gmn) = an,

(3.39)

where gij , i = 1, · · · ,m, j = 1, · · · , n, are the elements of Gλ. In this way, a nonlinear
system of n equations with n × m unknowns is obtained. By choosing n × (m − 1)
unknowns arbitrarily it is then possible to solve the system. It is clear that for one
case the result may be linear parameters. So one may say gained linear parameters
controller is the subset of nonlinear parameters controllers.

In general, solving nonlinear parametric equations (3.39) is difficult and makes
some problems, especially for large n and m. In next section, two methods to reduce
the dimension of large scale matrices to small scale ones are displayed.

4. Partial eigenvalue assignment

In this section, we present the existence and uniqueness theorem and a nonlinear
parametric algorithm to find the state feedback matrices in standard systems. The
aim of partial eigenvalue assignment is reassigning undesired eigenvalues of open-loop
spectrums in new system with smaller sizes of matrices such that other eigenvalues
unchanged. Therefore the stability in partial eigenvalue assignment for the standard
descriptor system is kept by reassigning eigenvalues in the unit disk and unchanging
the remain of eigenvalues in the standard system (3.19). Also we present some suf-
ficient conditions to be exist in another algorithm are not necessary for parametric
algorithm of eigenvalue assignment.

4.1. Existence and uniqueness.

Theorem 4.1. (Eigenvector criterion of controllability). The standard system (3.23)
or, equivalently, the matrix pair (B1, A1) is controllable with respect to the eigenvalue
λ of A1 if yHB1 ̸= 0 for all y ̸= 0 such that yHA1 = λyH [6].

Definition 4.2. The standard system (3.23) or the matrix pair (B1, A1) is partially
controllable with respect to the subset {λ1, · · · , λp} of the spectrum of A1 if it is
controllable with respect to each of the eigenvalues λj , j = 1, · · · , p.

Definition 4.3. The standard system (3.23) or the matrix pair (B1, A1) is completely
controllable if it is controllable with respect to every eigenvalue of A1.

Theorem 4.4. (Existence and uniqueness for eigenvalue assignment problem). The
eig-envalue assignment problem for the pair (B1, A1) is solvable for any arbitrary set
S = {µ1, · · · , µp} if and only if (B1, A1) is completely controllable. The solution is
unique if and only if the system is a single-input system (that is, if B1 is a vector). In
the multi-input case, there are infinitely many solutions, whenever a solution exists
[6].
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Theorem 4.5. (Existence and uniqueness for partial eigenvalue assignment problem).
Let Λ = diag(λ1, λ2, · · · , λp;λp+1, · · · , λn} be the diagonal matrix containing the eige-
nvalues λ1, · · · , λn of A1 ∈ Cn×n. Assume that the sets {λ1, λ2, · · · , λp} and {λp+1,
λp+2, · · · , λn} are disjoint. Let the eigenvalues {λ1, λ2, · · · , λp} to be changed to {µ1,
µ2, · · · , µp} and the remaining eigenvalues stay invariant. Then the partial eigenvalue
assignment problem for the pair (B1, A1) is solvable for any choice of the closed-loop
eigenvalues {µ1, µ2, · · · , µp} if and only if the pair (B1, A1) is partially controllable
with respect to the set {λ1, λ2, · · · , λp}. The solution is unique if and only if the system
is a completely controllable single-input system. In the multi-input case, and in the
single-input case when the system is not completely controllable, there are infinitely
many solutions, whenever a solution exists [6].

4.2. Eigenvalue assignment algorithm using orthogonality relations. There
exists an algorithm for partial eigenvalue assignment using orthogonality relations in
[15] as follows
Inputs:
(I) {Mk,Mk−1, · · · ,M0} are n× n real non-symmetric constant matrices.
(II) b is an n-vector and D = diag(µ1, · · · , µp) closed under complex conjugation.
Output:
The feedback vectors {fi}ki=1 such that the spectrum of modified matrix polynomial

P (λ) = Mkλ
k + (Mk−1 − bfT

1 )λk−1 + (M0 − bfT
k )

, is {µ1, · · · , µp;λp+1, · · · , λkn}, where {λp+1, · · · , λkn} are the last kn−p eigenvalues
of matrix polynomial P (λ) = λkMk + λk−1Mk−1 + · · ·+ λM1 +M0.
Assumptions:
(I) Mk is nonsingular matrix.
(II) The sets {µ1, · · · , µp}, {λ1, · · · , λp} are distinct and closed under complex con-
jugation, where {λ1, · · · , λkn} are the eigenvalues of matrix polynomial P (λ) =
λkMk + λk−1Mk−1 + · · ·+ λM1 +M0.
(III) Λ1 = diag(λ1, · · · , λp)
Step 1. Obtain the first p eigenvalues {λ1, · · · , λp} of matrix polynomial P (λ) =
λkMk +λk−1Mk−1 + · · ·+λM1 +M0 that need to be reassigned and the correspond-
ing left eigenvectors Y1 = (y1, y2, · · · , yp).
Step 2. Compute the explicit expression for β

βj =
1

bT ȳj

µj − λj

λj

p∏
i=1,i ̸=j

µi − λj

λi − λj
, j = 1, · · · , p.

Step 3. Form

fi =

i∑
j=1

[MT
k−i+j Ȳ1Λ

j
1]β

T , fk = −MT
0 Ȳ1β

T , i = 1, · · · , k − 1, βT ∈ Cp.

By Step 2, it is clear that sufficient conditions for the existence of β, and conse-
quently for a solution to the partial pole assignment problem to be exist are:

(1) No λj , j = 1, · · · , p vanishes,
(2) The {λi}pi=1 are distinct,
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(3) The vector b must be not orthogonal to ȳj , j = 1, · · · , p.

The above sufficient conditions are necessary to have an efficient algorithm. In
next subsection, we propose a useful algorithm without any need for these conditions.

4.3. Parametric algorithm of partial eigenvalue assignment. Following algo-
rithm presents a parametric method of partial eigenvalue assignment on the standard
system (3.23).
Inputs:
(a) The n× n matrix A1.
(b) The n×m control matrix B1.
(c) The set {µ1, µ2, · · · , µp}, closed under complex conjugation.
(d) The self-conjugate subset {λ1, · · · , λp} of the spectrum {λ1, · · · , λn} of the matrix
A1 and the associated right eigenvector set {y1, · · · , yp}.
Output:
The real feedback matrix F such that the spectrum of the closed-loop matrix A1+B1F
is {µ1, · · · , µp;λp+1, · · · , λn}.
Assumptions:
(a) The matrix pair (B1, A1) is partially controllable with respect to the eigenvalues
{λ1, · · · , λp}.
(b) The sets {λ1, · · · , λp}, {λp+1, · · · , λn}, and {µ1, · · · , µp} are disjoint.
Step 1. Form

Λ1 = diag(λ1, · · · , λp), Y1 = (y1, · · · , yp).
Step 2. Find feedback K such that eig(Λ1 + Y H

1 B1K) = {µ1, · · · , µp}.
Step 2.1. Calculate S0, G0,Φ by transformation matrix T and elementary similarity
operations on the pair of (B1, A1).
Step 2.2. Define the m× p parametric matrix Gλ in the form

Gλ =


g11 g12 · · · g1p
g21 g22 · · · g2p
· · · · · · · · · · · ·
gm1 gm2 · · · gmp

 .

Step 2.3. Solve the following nonlinear system of equations
f1(g11, · · · , gmp) = a1,
f2(g11, · · · , gmp) = a2,
...
fp(g11, · · · , gmp) = ap,

which ak = (−1)k
∑p

i1,··· ,ik=1,i1<···<ik
λi1 · · ·λik , k = 1, · · · , p.

Step 2.4. Form K = S−1
0 (−G0 +Gλ)T

−1.

Step 3. Form F = KY H
1 . Now we have eig(A1 +B1F ) = {µ1, · · · , µp;λp+1, · · · ,

λn}.
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In the next section of the paper an example is presented in order to compare the
numerical results obtained by our methods.

5. Illustrative example

The following example is given to investigate all methods presented by this article.
In case (a) until case (d), eigenvalue assignment by parametric forward state feedback,
eigenvalue assignment by parametric forward and propositional state feedback, partial
eigenvalue assignment using orthogonality relations, and partial eigenvalue assignment
by parametric forward and propositional state feedback are focused.

Example 5.1. The stabilization of the descriptor fractional discrete-time linear sys-
tem

E∆0.6xk+1 = Axk +Buk,

where

E =

 1 0 3
1 2 −3
0 −2 6

 , A =

 2 3 −1
−1 −2 −4
3 1 −5

 , B =

 1 −1
2 2
1 3

 ,

is examined. The matrices of system (3.3) is obtained by

Ā =



2.6 3 0.8 0.12 0 0.36 −0.06 0 −0.17
−0.4 −0.8 −5.8 0.12 0.24 −0.36 −0.06 −0.11 0.17
3 −0.2 −1.4 0 −0.24 0.72 0 0.11 −0.34
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


,

B̄ =



1 −1
2 2
1 3
0 0
0 0
0 0
0 0
0 0
0 0


,
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Ē =



1 0 3 0 0 0 0 0 0
1 2 −3 0 0 0 0 0 0
0 −2 6 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

Case (a). Consider the subsections 3.1 and 3.3. The eigenvalue assignment via para-
metric forward state feedback is not applicable. The pair (M,N) may not be defined
because of singularity of the matrix Ā. Here we have rank(Ā) = 8 < 9.

Now consider the standard systems (3.17) and (3.19) by propositional and for-
ward state feedbacks respectively. Only obtaining the forward feedback matrix Ff is
displayed by the propositional state feedback matrix Fp as

Fp =

[
−0.48 10.33 −31.08 1.01 −3.82 14.13 0.01 0.6 −1.76
−1.27 −1.57 4.42 −0.12 0.69 −2.42 0 −0.15 0.42

]
.

by assigning all eigenvalues to 0.1.

The pair of (M,N) is obtained by

N = 108×

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0.09 0.79 −2.09 0.01 −0.03 0.12 0 0 −0.01
−0.11 −0.89 2.35 −0.01 0.03 −0.14 0 0 0.01
−0.03 −0.29 0.78 0 0.01 −0.04 0 0 0


,

M = 107 ×



0 0
0 0
0 0
0 0
0 0
0 0

0.99 6.92
−1.12 −7.79
−0.37 −2.59


.

Case (b). Consider the subsections 3.2 and 3.3. The eigenvalue assignment via para-
metric forward and propositional state feedback is solved by given pair (M,N) and Fp.
We assign {±2.5,±2.5,±2.5,±2.5, 2.5} in the system (3.19), to be assigned {±0.4,±0.4,
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± 0.4,±0.4, 0.4} in system (3.3) and obtain feedback Ff .

Consider the matrix Gλ as

Gλ =

[
g11 g12 g13 g14 g15 g16 g17 g18 g19
g21 g22 g23 g24 g25 g26 g27 g28 g29

]
.

Nonlinear parametric equations are as follow:



g11 + g22 = 2.5
g13 − g24 + g21g12 − g11g22 = 12.5
g15 + g26 + g23g12 + g21g14 − g13g22 − g24g11 = −31.25
g17 + g28 + g23g14 + g21g16 − g22g15 − g24g13 − g26g11 + g25g12 = 0
g19 + g27g12 + g23g16 + g21g18 − g22g17 − g24g15 − g26g13 − g28g11

+g25g14 = 0
g29g12 + g27g14 − g22g19 − g24g17 − g26g15 − g28g13 + g25g16 + g23g18

= −488.28
g29g14 + g27g16 + g25g18 − g24g19 − g26g17 − g28g15 = 1.22× 103

g29g16 + g27g18 − g26g19 − g28g17 = 1.52× 103

g29g18 − g28g19 = −3.81× 103

The forward state feedback matrix

Ff =

[
f11 f12 f13 f14 f15 f16 f17 f18 f19
f21 f22 f23 f24 f25 f26 f27 f28 f29

]
,

where

f11 = 231.58g11 + 122193.04g12 + 0.47g13 − 0.17g14 + 1788.7g18 − 1621.07g21

− 855351.79g22 − 3.3g23 + 1.24g24 − 12520.93g28 − 0.37× 109,

f12 = 209.36g11 + 121396.82g12 + 0.49g13 − 0.17g14 − 1192.46g16

+ 1073.34g18 − 1465.56g21 − 849778.26g22 − 3.44g23 + 1.2g24

+ 8347.28g26 − 7513.41g28 − 0.39× 109,

f13 = −10.54g11 − 38341.99g12 − 0.21g13 + 0.04g14 + 3577.4g16

+ 1549.84g18 + 73.81g21 + 268394.12g22 + 1.51g23 − 0.3g24,

− 25041.86g26 − 10848.91g28 + 0.18× 109,

f14 = −3.26g12 + 0.02g24 + 223554.29,
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f15 = −18.31g11 − 9777.49g12 − 0.03g13 − 1192.45g14 + 3577.4g16

+ 1549.84g18 + 128.22g21 + 68442.51g22 + 0.26g23 + 8347.2g24

− 0.85g26 + 1001.67g28 + 0.3× 108,

f16 = 54.95g11 + 29323.68g12 + 0.11g13 + 3577.36g14 − 0.36g16 + 429.28g18

− 384.67g21 − 205265.88g22 − 0.79g23 − 25041.54g24 + 2.55g26

− 3005.02g28 − 0.91× 108,

f17 = 0.02g22 − 23.98,

f18 = 8.64g11 + 3369.67g12 + 0.01g13 + 0.11g14 + 66.77g18 − 60.51g21

− 23587.7g22 − 0.12g23 − 0.8g24 − 467.44g28 − 0.14× 108,

f19 = −25.93g11 − 10109.05g12 − 0.05g13 − 0.34g14 − 200.33g18 + 181.55g21

+ 70763.45g22 + 0.37g23 + 2.42g24 + 1402.34g28 + 0.42× 108,

f21 = 231.58g21 + 122193.04g22 + 0.47g23 − 0.17g24 + 1788.7g28 + 0.53× 1010,

f22 = 209.36g21 + 121396.82g22 + 0.49g23 − 0.17g24 − 1192.46g26 + 1073.34g28

+ 0.56× 1010,

f23 = −10.54g21 − 38341.99g22 − 0.21g23 + 0.04g24 + 3577.4g26 + 1549.84g28

− 0.25× 108,

f24 = −3.26g22 − 31936.34,

f25 = −18.31g21 − 9777.49g22 − 0.03g23 − 1192.45g24 + 0.12g26 − 143.09g28

− 0.43× 107,

f26 = 54.95g21 + 29323.68g22 + 0.1g23 + 3577.36g24 − 0.36g26 + 429.28g28

+ 0.13× 108,

f27 = −0.004g22 + 3.42,

f28 = 8.64g21 + 3369.67g22 + 0.01g23 + 0.11g24 + 66.77g28 + 0.2× 107,

f29 = −25.93g2110109.05g22 − 0.05g23 − 0.34g24 − 200.33g28 − 0.6× 107,

is obtained by

Ff = 108 ×
[

−3.84 −4.02 1.81 0 0.31 −0.93 0 −0.14 0.42
0.54 0.57 −0.25 0 −0.04 0.13 0 0.02 −0.06

]
,

and elements of matrix Gλ are as
g11 = −4.31, g12 = −9.18, g13 = −1.7, g14 = −4.03, g15 = 13.21, g16 = −14.9,
g17 = 44.13, g18 = −111.46, g19 = 65.42, g21 = 1.69, g22 = 6.81, g23 = 4.13,
g24 = −0.32, g25 = −9.04, g26 = −9.9, g27 = −27.69, g28 = 48, g29 = 6.04.

As it is shown in Fig 1 the variables xi(t), i = 1, 2, 3 converge to zero and the
eigenvalues of the closed-loop matrix of the standard descriptor system (3.3) are in
the unit disk.

Case (c). Consider the method in subsection 4.2. Because eig(N) = {64.37±85.18i,
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− 81.93, 15.68 ± 11.72i, 13.72,−2.53, 0.61, 0}, we reassign p = 2 eigenvalues {10, 10}
instead of {0, 0.61} while leaving the other eigenvalues unchanged. The first sufficient
conditions for the solution of the partial eigenvalue assignment using orthogonality
relations is not existed. {λ1, λ2} should not vanish while {λ1, λ2} = {0, 0.61}. There-
fore this method can not be used in this example, too.

Case (d). Consider the method in subsection 4.3. Similar to case (c), because
eig(N) = {64.37± 85.18i,−81.93, 15.68± 11.72i, 13.72,−2.53, 0.61, 0}, we need to re-
assign {10, 10} instead of {0, 0.61} while leaving the other eigenvalues unchanged (Fig
2). So by using partial eigenvalue assignment on new pair (Y H

1 M,Λ1)

Y H
1 M =

[
0 0.2

−0.04 −0.12

]
, Λ1 =

[
0.61 0
0 0

]
.

and considering

Gλ =

[
g11 g12
g21 g22

]
,

nonlinear parametric equations are as follow:{
g11 + g22 = 20
−g12g21 + g11g22 = 100.

The matrix feedback

Kf =

[
f11 f12
f21 f22

]
,

where

f11 = −13.95g11 + 4.65g12 + 8.64,

f12 = −22.05g11 − 0.52g12,

f21 = −13.95g21 + 4.65g22 − 2.88,

f22 = −22.05g21 − 0.52g22,

is obtained by

Kf =

[
−130.94 −220.54
43.65 −5.21

]
.

and the elements of matrix Gλ are as

g11 = 10, g12 = 0, g21 = 0, g22 = 10.

Also Ff is obtained as

Ff =

[
28.84 −79.99 308.52 −10.62 31.77 −123.42 0.28 −4.16 13.24
4.73 14.64 −30.15 1.45 −4.79 18.26 −0.03 0.88 −2.76

]
.

The eigenvalues of the closed-loop matrix of the standard system (3.19) and the
standard descriptor system (3.3) are {64.37± 85.18i,−81.93, 15.68± 11.72i, 13.7
2,−2.53, 10, 10}, {−0.395, 0.04 ± 0.03i,−0.012, 0.005 ± 0.007i, 0.072, 0.1, 0.1} respec-
tively. The figures show that the input variables xi(t), i = 1, 2, 3 in case (d) (Fig 2)
better converged to zero from case (b) (Fig 1).
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(a) (b) (c)

Figure 1. xi(t) in case (b)

(a) (b) (c)

Figure 2. xi(t) in case (c)

6. Conclusions

Some methods for stabilization and control of descriptor fractional discrete-time
linear systems are compared. Assigning desired eigenvalues in unit disk to the con-
verted standard descriptor discrete-time linear system is done by eigenvalue assign-
ment with parametric forward state feedback. This method needs an impossible suffi-
cient condition for some examples where it is possible by eigenvalue assignment with
parametric forward and propositional state feedback. Solving nonlinear equations
may make error for large matrices. Decreasing dimensions of matrices and the num-
ber of nonlinear parametric equations partial eigenvalue assignment may be used. The
partial eigenvalue assignment algorithm using orthogonality relations is not doable for
reassigning indistinct and vanished eigenvalues. But in partial eigenvalue assignment,
we can reassign undesired indistinct and even zero eigenvalues while leaving the rest
of the spectrum invariant. Also the eigenvalues of closed-loop matrix in last method
lie in desired region and convergence to zero is better for vectors xi(t), i = 1, · · · , n.
The results presented in this article are also applicable in stabilization of delayed,
two-dimensional, and positive fractional systems. The subject of minimum norm of
nonlinear parametric feedback matrices is remarkable, too. An extension of these
considerations for continuous-time descriptor fractional linear systems is still an open
problem.
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