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Abstract Stochastic linear combinations of some random vectors are studied where the dis-
tribution of the random vectors and the joint distribution of their coefficients have
Dirichlet distributions. A method is provided for calculating the distribution of these
combinations which has been studied before. Our main result is the same as but

from a different point of view.
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1. Introduction

Identifying the distribution of the randomly weighted averages of various distri-
butions are in the interest of researchers. The main motivation for writing this note
comes from [1].

For given random variables X1, · · · , Xn, the distribution of the stochastic linear
combination Z=

∑n
i=1 WiXi is used for the problems in lifetime, stochastic matrices,

and neural networks. Also, other applications are in sociology and biology.
Let Xi (1 ≤ i ≤ n) be the lifetime measured in a lab and 0 ≤ Wi ≤ 1 be the

random effect of the environment on it; so WiXi ≤Xi and thus
∑n

i=1 WiXi is the
average lifetime in the environment (see [4]). Recently, several authors have focused
on computing the lifetime of systems in the real conditions. Indeed, the randomly
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linear combination of random vectors have been used in different problems including
traditional portfolio selection models, relationship between attitudes and behavior,
the number of cancer cells in tumor biology, stream flow in hydrology, branching
processes, infinite particle systems and probabilistic algorithms, vehicle speed, and
lifetime (cf. [1], and the references therein). Therefore, numerous researchers payed
their attention to find the distribution of lifetime. By accepting all the assumptions
of [1], we want to obtain the result [1] in a different approach.

The inner product of two random vectors was introduced in [2, 3] and the exact
distribution of this product was investigated for some random vectors with Beta and
Dirichlet distributions. In this paper, a new generalization for the inner product of two
random vectors is introduced. For a random vector W′ = ⟨W1, · · · ,Wn⟩ and a vector
X = ⟨X1, · · · ,Xn⟩ of random vectors (eachXi being k-dimensional) the inner product
of X and W is essentially the linear transformation of W under the k × n matrix X
which is Z=

∑n
i=1 WiXi. We assume that W is independent of X1, · · · ,Xn and all

of which are with Dirichlet distribution. To identify the distribution of random linear
combination, Z=

∑n
i=1 WiXi, moment method is used (see e.g. [1, 3, 4, 5, 6, 8, 10]

and the references therein).
In this paper, a way is introduced to identify the distribution of randomly linear
combinations (of Dirichlet distributions) which has been obtained by solving some
specific differential equations in [1].

2. The Method

The method for identifying the distribution of the randomly linear combination is
given in the sequel, which has been studied before in [10].

Theorem 2.1. Let X1, · · · ,Xn be independent k-variate random vectors with
Dirichlet(α(1)), Dirichlet(α(2)), · · · , Dirichlet(α(n)) distributions corspondingly, for

some k-dimensional vectors α(j) =
⟨
α
(j)
1 , · · ·α(j)

k

⟩
, (j = 1, · · · , n). Let also the ran-

dom vector W = ⟨W1, · · · ,Wn⟩ be independent from X1, · · · ,Xn all of which are with
the Dirichlet distribution

Dirichlet(
k∑

j=1

α
(1)
j ,

k∑
j=1

α
(2)
j , · · · ,

k∑
j=1

α
(n)
j ).

Then the distribution of randomly linear combination Z =
∑n

i=1 WiXi is as follows,

Dirichlet(
n∑

i=1

α
(i)
1 ,

n∑
i=1

α
(i)
2 , · · · ,

n∑
i=1

α
(i)
k ).

Proof. We find the general moments (s1, s2, · · · , sk) of Z as fallow:

E(
k∏

j=1

(
n∑

i=1

WjXij)
sj ) = E(

k∏
j=1

(
∑
hj

(
sj

h1j , h2j , · · · , hnj

) n∏
i=1

(WjXij)
hij )) (2.1)
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where
∑

hj
denotes summation over all nonnegative integers

hj = (h1j , h2j , · · · , hnj) subject to
n∑

i=1

hij = sj , (j = 1, 2, · · · , n).

Equation (2.1) can be rearranged as

= E(
∑
h1

· · ·
∑
hk

(

k∏
j=1

(
sj

h1j , h2j , · · · , hnj

) k∏
j=1

n∏
i=1

(WiXij)
hij ))

= E(
∑
h1

· · ·
∑
hk

(
k∏

j=1

(
sj

h1j , h2j , · · · , hnj

)
(

n∏
i=1

Whi.
i )

k∏
j=1

n∏
i=1

X
hij

ij ))

where hi. =
∑k

j=1 hij and we have,

=
∑
h1

· · ·
∑
hk

(
k∏

j=1

(
sj

h1j , h2j , · · · , hnj

)
E(

n∏
i=1

Whi.
i )E(

k∏
j=1

n∏
i=1

X
hij

ij )), (2.2)

By using the Dirichlet distribution, we have

E(
n∏

i=1

Whi.
i ) =

Γ(
∑n

i=1

∑k
j=1 α

(i)
j )

Γ(
∑n

i=1

∑k
j=1 α

(i)
j +

∑k
j=1 sj)

n∏
i=1

Γ(
∑k

j=1 α
(i)
j + hi.)

Γ(
∑k

j=1 α
(i)
j )

Also, we have

E
k∏

j=1

n∏
i=1

X
hij

ij =
n∏

i=1

E
k∏

j=1

X
hij

ij ,

and by using the dirichlet distribution, we have

E(
k∏

j=1

X
hij

ij ) =
Γ(
∑k

j=1 α
(i)
j )

Γ(
∑k

j=1 α
(i)
j + hi.)

k∏
j=1

Γ(α
(i)
j + hij)

Γ(α
(i)
j )

So, by using (2.2)

=
∑
h1

· · ·
∑
hk

k∏
j=1

(
sj

h1j , h2j , · · · , hnj

)
(

Γ(
∑n

i=1

∑k
j=1 α

(i)
j )

Γ(
∑n

i=1

∑k
j=1 α

(i)
j +

∑k
j=1 sj)

n∏
i=1

Γ(
∑k

j=1 α
(i)
j + hi.)

Γ(
∑k

j=1 α
(i)
j )

(
n∏

i=1

Γ(
∑k

j=1 α
(i)
j )

Γ(
∑k

j=1 α
(i)
j + hi.)

k∏
j=1

Γ(α
(i)
j + hij)

Γ(α
(i)
j )

)

=
Γ(
∑n

i=1

∑k
j=1 α

(i)
j )

Γ(
∑n

i=1

∑k
j=1 α

(i)
j +

∑k
j=1 sj)

∑
h1

· · ·
∑
hk

k∏
j=1

(
sj

h1j , h2j , · · · , hnj

)
k∏

j=1

n∏
i=1

Γ(α
(i)
j + hij)

Γ(α
(i)
j )

.
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By considering the fact that the sum of the Dirichlet-multimonial distribution on
its support equals to one, we have

=
Γ(
∑n

i=1

∑k
j=1 α

(i)
j )

Γ(
∑n

i=1

∑k
j=1 α

(i)
j +

∑k
j=1 sj)

k∏
j=1

Γ(
∑n

i=1 α
(i)
j + sj)

Γ(
∑n

i=1 α
(i)
j )

which is the general moment of the k-variate

Dirichlet(

n∑
i=1

α
(i)
1 ,

n∑
i=1

α
(i)
2 , · · · ,

n∑
i=1

α
(i)
k )

distribution, and since Z is a bounded random variable, its distribution is uniquely
determined by its moments. Thus the proof is complete. □

3. Some Applications in Stochastic Differential Equations by
c-Characteristic Function

The following proof is suggested by a reviewer of the journal Communications in
Statistics: Theory and Methods in which the paper [1], is published:
“ Jiang, Dickey and Kuo [7] define the multivariate c-characteristic function to solve
many problems that are difficult to manage using the traditional characteristic func-
tion or moment generating function.

If u = (u1, · · · , uk) is a random vector, its multivariate c-characteristic function is

defined as g(t1, · · · , tk;u, c) = E
{
(1− it1u1 − · · · − itkuk)

−c
}

where c is a positive

real number. See Definition 2.1 in [7]. when c is fixed, Jiang, Dickey and Kuo ([7],
Lemma 2.2) show that there is a one-to-one correspondence between random vector
and its multivariate c-characteristic function. Moreover, if u ∼ Dirichlet(α1, · · · , αk)
and c = α1 + · · ·+ αk, then its multivariate c-characteristic function is given by

g(t1, · · · , tk;u, c) = E


1− i

k∑
j=1

tjuj

−c =

k∏
j=1

(1− itj)
−αj .

See Corollary 3.4 in [7].
Now, we provide a simpler proof for Theorem 2.1, by the above identity only. Let

Z = (Z1, · · · , Zk) =
∑n

j=1 WjXj where Xj = (Xj1, · · · , Xjk) for 1 ≤ j ≤ n. It can
be shown that

1− it1Z1 − · · · − itkZk = 1− i

n∑
j=1

Wj

k∑
r=1

trXjr.
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Let c =
∑n

j=1

∑k
r=1 α

(j)
r . Then, the multivariate c-characteristic function of Z is

g(t1, · · · , tk;Z, c) = E
{
(1− it1u1 − · · · − itkuk)

−c
}

= EE


1− i

n∑
j=1

Wj

k∑
r=1

trXjr

−c

|X1, · · · ,Xn


=

n∏
j=1

E


(
1− i

k∑
r=1

trXjr

)−
∑k

r=1 α(j)
r


=

n∏
j=1

k∏
r=1

(1− itr)
−α(j)

r =
k∏

r=1

(1− itr)
−

∑n
j=1 α(j)

r

Therefore,

Z ∼ Dirichlet

 n∑
j=1

α
(j)
1 , · · · ,

n∑
j=1

α
(j)
k

 .”

We will employ some closely related argument in our future research papers.

4. Conclusions

The main result of this paper (Theorem 2.1) shows that our results cannot be gen-
eralized by changing the parameters of the distribution. So, we will investigate two
topics in two future research works: (1) the obtained results cannot be generalized
for arbitrary parameters, and we will propose one other method for obtaining more
and better results; and (2) by using the simulation and the approximation methods,
the results will be generalized, as was previously done by Homei and Nadarajah ([6]).
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