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Abstract The nonlinear variable coefficient Zakharov-Kuznetsov (Vc-ZK) equation is derived

using reductive perturbation technique for ion-acoustic solitary waves in magnetized
three-component dusty plasma having negatively charged dust particles, isothermal
ions, and electrons. The equation is investigated for generalized symmetries us-
ing a recently proposed compatibility method. Some more general symmetries are

obtained and group invariant solutions are also constructed for these symmetries.
Besides this, the equation is also investigated for nontrivial local conservation laws.
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1. Introduction

In plasma physics, research in nonlinear wave propagation through dusty plas-
mas is rapidly growing. The standard equations in physics like KdV, modified KdV
and Schrödinger wave equation best suited to describe wave phenomenon in plasma
physics. The KdV equation was first used by Washmi and Taniuti [25] to describe
ion-acoustic wave propagation through dusty plasmas and with aid of reductive per-
turbation technique [12, 24] several nonlinear wave equations including Zakharov–
Kuznetsov equation describing ion-acoustic wave propagation through dusty plasmas
have been recently derived and investigated analytically by various mathematical
tools [7, 8, 16, 20, 22, 28]. In present work, we have derived (3+1)–dimensional
Zakharov-Kuznetsov equation and is further constrained by putting variable coeffi-
cients to incorporate more realistic means. Although Zakharov–Kuznetsov equation
and its various generalisations have been investigated for Lie symmetries [17, 26, 30],
soliton solutions using Hirota’s method [20, 21], exact solutions [6, 14, 29, 31], but
to the best of our knowledge the Vc-ZK equation in (3+1)-dimension has never been
investigated for generalized symmetries. So in this article, we tried to find new sym-
metries for the Vc-ZK equation using the compatibility method given by Yan and Liu
[26].
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Governing equations

Consider Poisson’s equations governing two-component plasma consisting of cold
ions and non-extensive electrons in an external static magnetic field directed along
z-axes

nt +∇ · (nV ) = 0, (1.1a)

Vt + (V · ∇)V = −∇ϕ+
Ωi

ωpi
(V × z), (1.1b)

∇2ϕ = ne − n, (1.1c)

with normalized electron density ne = [1 + (q − 1)ϕ]
(q+1)/2(q−1)

, where n and ne are
normalized unperturbed number densities of ions and electrons respectively. V (u, v, w)
and ϕ are ion velocity (x, y, z directions) and electrostatic potential which are normal-

ized by ion acoustic speed Cs =
√
Te/mi and Te/e respectively. Ωi is the ion-cyclotron

frequency. The space and time variables are in units of λD =
√
Te/4πe2ne0, the elec-

trons Debye length and reciprocal of ion-plasma frequency ωpi =
√
4πe2ni0/mi, and

q being strength of nonextensivity such that for q < −1, the nonextensive electron
distribution can not be normalized.
To obtain (3+1)-dimensional Zakharov-Kuznetsov equation using standard reductive
perturbation theory [12, 24], we chose new independent variables

ξ =
√
ϵ x, η =

√
ϵ y, ζ =

√
ϵ (z − λ0t), τ = ϵ

√
ϵ t, (1.2)

where ϵ being small and dimensionless perturbation parameter, which also character-
izes the strength non-linearity of the system and λ is the phase velocity of the wave
along x-axes. Let us consider generalized expressions for state variables as follow:

X =
∞∑

m=0

ϵmXm, Y =
∞∑

m=1

ϵ1+
m
2 Ym, (1.3)

where X(= n,w, ϕ) and Y (= u, v) describe state of system and equilibrium state is
corresponding to m = 0, such that ϕ0 = 0, w0 = 0 and n0 = 1. Substituting (1.3)
along with stretching variables (1.2) into Poisson’s equations (1.1) and from lowest
powers of ϵ, we obtain

n1 =
w1

λ0
, u1 = −ωpi

Ωi
ϕη, v1 = −ωpi

Ωi
ϕξ, w1 =

ϕ1
λ0
, ϕ1 =

n1
c1
. (1.4)

Subsequently, from next higher orders of ϵ we obtain following

u2 =
ωpiλ0
Ωi

v1,ζ , v2 = −ωpiλ0
Ωi

u1,ζ . (1.5)

Finally, by reductive perturbation method, the following (3+1)-dimensional Zakharov-
Kuznetsov equation is obtained

ϕ1,τ + Pϕ1ϕ1,ζ +Qϕ1,ζζζ +R (ϕ1,ζηη + ϕ1,ζξξ) = 0, (1.6)
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where the coefficients are given by the following formulae

P =
λ0
2c1

[
3c1
λ20

− 2c2

]
, Q =

λ0
2c1

, R =
λ0
2c1

[
1 +

c1λ
2
0ω

2
pi

Ω2
i

]
,

for c1 =
q + 1

2
, c2 =

(q + 1)(3− q)

8
.

In following, the various versions of equation (1.6) have been listed.

(1) The constant coefficient version:

ut + auux + buxxx + uxyy + uxzz = 0. (1.7)

is investigated by Lie group analysis [30] wherein multi-parameter optimal sys-
tem along with several exact solutions are also reported. The fractional vari-
ant of equation (1.7) has also been studied using the first integral method and
the functional variable method to establish exact traveling wave solutions[9].
The equation (1.7) has physical importance in plasma laboratories as it helps
in describing the evolution of solitary waves in plasma and other properties
of solitary waves and double layers [5, 7].

(2) The Zakharov-Kuznetsov equation with power law non-linearity:

ut + aunux + b(uxx + uyy)x = 0, (1.8)

and dual power law non-linearity

ut + (aun + bu2n)ux + c(uxx + uyy)x = 0, (1.9)

both equations (1.8) and (1.9) describe the passage of the ion-acoustic wave
through cold plasma where electrons behave in a non-isothermic way [1, 2].
The fractional variant of equation (1.9) has been studied for soliton solutions
using Riccati sub equation method and new exact solutions involving param-
eters, expressed by generalized hyperbolic functions are also obtained [13].
The non-linearity is included in order to incorporate the change in electron
number density in reductive perturbation method. Besides this, the (3+1)-
dimensional Zakharov-Kuznetsov equation with power law non-linearity:

ut + aunux + b(uxx + uyy + uzz)x = 0, (1.10)

is investigated via Lie group analysis [15] and its fractional variant has been
exploited in [19].

(3) The generalized variable coefficient Zakharov-Kuznetsov equation:

ut + a(t)uux + b(t)u2ux + uxxx + c(t)uxyy = 0, (1.11)

and slightly more general form

ut + α(t)uux + β(t)u2ux + ρ(t)uxx + λ(t)uxxx + γ(t)uxyy = 0. (1.12)

The equations (1.11) and (1.12) have been investigated via similarity analysis
[17, 26] and several exact solutions have also been obtained using Riccati
equation mapping method [14].
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In present work, we would like to analyze the variable coefficient version of (1.6)
derived using reductive perturbation technique, it reads as follow:

ut + a(t)uux + uxxx + b(t)uxyy + c(t)uxzz = 0. (1.13)

This is (3+1)-dimensional variable coefficient Zakharov-Kuznetsov (Vc-ZK) equation.
Although, the Lie symmetry analysis of equations similar to (1.13) in lower dimensions
can be seen in the literature, but to best of our knowledge the equation is not explored
for generalized symmetries.

2. Classical Lie point symmetries of Vc-ZK equation

The Lie point symmetries for (1.13) can be obtained by a standard procedure given
in [3, 18] and for recent applications the Refs. [10, 11, 23] can be seen. Consider one-
parameter local Lie group of point transformations in the following manner:

x∗ = x+ ϵX(x, y, z, t, u) +O(ϵ2), y∗ = y + ϵY (x, y, z, t, u) +O(ϵ2),

z∗ = t+ ϵZ(x, y, z, t, u) +O(ϵ2), t∗ = t+ ϵT (x, y, z, t, u) +O(ϵ2),

u∗ = u+ ϵΦ(x, y, z, t, u) +O(ϵ2), (2.1)

where ϵ is a group parameter. The invariance of (1.13) under infinitesimal transforma-
tions (2.1) provides an overdetermined system of linear partial differential equations
in X,Y, Z, T and Φ. Such an overdetermined system can be derived by considering
the following associated vector field:

V = X
∂

∂x
+ Y

∂

∂y
+ Z

∂

∂z
+ T

∂

∂t
+Φ

∂

∂u
. (2.2)

This forms Lie algebra on the space of independent and dependent variables and group
transformations can be recovered from (2.2) by Lie’s first theorem. Since V acts on
the solution space of (1.13), so this can be prolonged to act on space of all partial
derivatives in (1.13). However, the prolonged formula for (2.2) is rather complicated
yet algorithmic and is successfully implemented in several symbolic manipulation pro-
grams including Maple and Mathematica. For symmetry determination, the equation
(1.13) have to be written in the following symbolic form

∆ ≡ ut + a(t)uux + uxxx + b(t)uxyy + c(t)uxzz = 0. (2.3)

The determining system of PDEs for X,Y, Z, T and Φ is given by the invariance
criterion

V (3)(∆)
∣∣
∆=0

= 0, (2.4)

where the third order prolongation V (3) of vector field (2.2) is given by

V (3) = V +Φ[x] ∂

∂ux
+Φ[xxx] ∂

∂uxxx
+Φ[xyy] ∂

∂uxyy
+Φ[xzz] ∂

∂uxzz
. (2.5)

The extended components Φ[x],Φ[xxx],Φ[xyy] and Φ[xzz] explicitly depend onX,Y, Z, T
and Φ and their derivatives, for details see Ref. [3]. The simplification of equation
(2.4) with the aid of Maple gives a system of 130 PDEs for X,Y, Z, T and Φ, which
further reduce to system of 70 PDEs when the direct procedure of determining system
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is adopted. However, if the option of integrability condition is imposed, the invariance
criteria (2.4) reduce to just 20 PDEs which are listed below

X = X (x, t) , Y = Y (y, z) , Z = Z (y, z) , T = T (t) , Xx,x = 0,

Φu,u = 0, Φu,x = 0, cYz + bZy = 0, −Tct + 2cZz − 2cXx = 0,

2Zzbc− 2Yybc− bTct + Tcbt = 0, −bYyy + 2bΦuy − cYzz = 0,

2cΦuz − bZyy − cZzz = 0,

aΦxu+ bΦxyy + cΦxzz +Φt +Φxxx = 0, −Tct − cTt + 2cZz + cXx = 0,

bcΦuyy + c2Φuzz − cXt + 2acZzu− u(act − cat)T + acΦ = 0.

(2.6)

Solving the determining equations (2.6), following solution may be obtained:

X = c6x+ c7, Y = c1y + c3z, Z = c4y + c2z

T =3 c6t+ c5, Φ = c8 u,
(2.7)

along with additional constraints given as follow:

− Tc′(t) + 2c2c(t)− 2c(t)c6 = 0,

2b(t)c(t)(c2 − c1) + T (c(t)b′(t)− b(t)c′(t)) = 0,

c3c(t) + c4b(t) = 0,

2c2a(t)c(t)− T (a(t)c′(t)− c(t)a′(t)) + a(t)c(t)c8 = 0.

(2.8)

In the next section, we shall investigate equation (1.13) for generalized symmetries
using compatibility method.

3. Generalized symmetries of Vc-ZK equation

In following, main aim is to obtain generalized symmetries of the Vc-ZK equation
(1.13) using the compatibility method [26, 27]. The generalized symmetries may be
assumed to be in the following form:

αux + βuy + γuz − ut + δu+ e ≡ 0. (3.1)

The unknown functions α, β, γ, δ and e of (x, y, z, t) can be determined from set of
determining equations when compatibility between (1.13) and (3.1) is established.
To obtain compatibility condition, the time derivative ut in the equations (1.13) and
(3.1) must be equated, and result reads as follows:

a(t)uux + uxxx + b(t)uxyy + c(t)uxzz + αux + βuy + γuz + δu+ e = 0. (3.2)

Further, on equating ut,t in equations (1.13) and (3.1), following relation may be
obtained

atuux + autux + auutx + utxxx + btuxyy + butxyy + ctuxzz + cutxzz

+ αtux + αutx + βtuy + βuty + γtuz + γutz + δtu+ δut + et = 0. (3.3)

With the aid of Maple, on substituting ut, utx, uty, utz, utxxx, utxyy and utxzz from
equation (3.1) in equation (3.3) a very large equation is obtained which for sake of
brevity we have omitted writing here. In this equation, using equation (3.2) we can
further eliminate uxxx, uxxxx, uxxxy and uxxxz. On equating to zero the coefficients of
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various partial derivatives of u, the following set of determining equations have been
obtained:

αy = αz = 0, βx = γx = δx = 0, −2cαx + 2cγz + ct = 0, 2cβz + 2bγy = 0,

bt − 2bαx + 2bβy = 0, 2cδz + cγzz + bγyy = 0,−3αxγ + γt = 0,

2bδy + cβzz + bβyy = 0,−3αxβ + βt = 0, αxx = 0, aδ − 2aαx + at = 0,

αt + bδyy + cδz,z − 3ααx + ae = 0, δt − 3αxδ + aex = 0,

− 3αxe+ bexyy + cexzz + et + exxx = 0.

(3.4)

Solving the determining equations (3.4), we get:

α = f(t)x+ g(t), β = (c2y + c3z)e
3
∫
f(t)dt, γ = (c4y + c1z)e

3
∫
f(t)dt,

δ =

(
− c5

∫
a(t)dt+ c7

)
e3

∫
f(t)dt, e = (c5x+ c6)e

3
∫
f(t)dt,

(3.5)

along with the additional constraint conditions on coefficient functions which are given
as follow:

f ′(t)− 3f2(t) + c5a(t)e
3
∫
f(t)dt = 0, g′(t)− 3f(t)g(t) + c6a(t)e

3
∫
f(t)dt = 0,

a(t)

(
− c5

∫
a(t)dt+ c7

)
e3

∫
f(t)dt − 2a(t)f(t) + a′(t) = 0,

c3c(t) + c4b(t) = 0,−2c(t)f(t) + 2c1c(t)e
3
∫
f(t)dt + c′(t) = 0,

b′(t)− 2b(t)f(t) + 2c2e
3
∫
f(t)dt = 0,

(3.6)

with ′ := d
dt and f(t), g(t) are functions constrained by relations (3.6).

Remark 3.1. From the structure of generalized symmetries (3.5) and on comparing
with symmetries (2.7) obtained using Lie classical method, it is evident that we able
to obtain more general symmetries for (1.13). Moreover, as a particular case for
c5 = c6 = 0, from generalized symmetries (3.5) classical symmetries (2.7) can be
recovered.

4. Reduction of Vc-ZK equation and some explicit solutions

In this section, the similarity reduction of Vc-ZK (1.13) by generalized symmetries
(3.4) is given. The similarity transformations for reduction can be obtained by solving
the following characteristics equations:

dx

α
=
dy

β
=
dz

γ
=

dt

−1
=

du

−δu− e
. (4.1)

As an alternative measure it is quite obvious to solve generalized determining equa-
tions (3.4) for ex = 0 with the aid of Maple and the results read as follow:

α = − x

−3 q + 3 t
− k1λ (q − t)

−s−1

s
+

κ

q − t
, β =

ry − 6 ν

−6 q + 6 t
,

γ =
pz − 6µ

−6 q + 6 t
, δ =

3 s+ 1

−3 q + 3 t
, e =

λ

q − t
,

(4.2)



306 M. SINGH

along with the additional constraint conditions for coefficient functions

a(t) =
k1

(q − t)
s+1 , b(t) =

k2

(q − t)
r
3+

2
3

, c(t) =
k3

(q − t)
p
3+

2
3

, (4.3)

where p, q, r, s, λ, µ, ν and κ are integral constants, k1, k2 and k3 are arbitrary con-
stants.
Thus, the corresponding generalized symmetry (3.1) can be written as follows:

ψ =

(
− x

−3 q + 3 t
− k1λ (q − t)

−s−1

s
+

κ

q − t

)
ux +

ry − 6 ν

−6 q + 6 t
uy

+
pz − 6µ

−6 q + 6 t
uz − ut +

3 s+ 1

−3 q + 3 t
u+

λ

q − t
. (4.4)

Next, is to proceed for reduction of Vc-ZK equation (1.13) under action of general-
ized symmetry (4.4). Solving characteristics equations (4.1), the following invariant
transformations are obtained:

ξ1 =
x

(q − t)
1
3

− 3k1λ (q − t)
−s− 1

3

s (3 s+ 1)
+

3κ

(q − t)
1
3

, ξ2 =
1

(q − t)
− r

6

(
y − 6ν

r

)
,

ξ3 =
1

(q − t)
− p

6

(
z − 6µ

p

)
,

(4.5)

and reduction field

u =
3λ

3 s+ 1
+ (q − t)

s+ 1
3 F (ξ1, ξ2, ξ3) . (4.6)

The unknown function F (ξ1, ξ2, ξ3) satisfies following relation:

−
(
s+

1

3

)
F +

1

3
ξ1Fξ1 −

1

6
rξ2Fξ2 −

1

6
pξ3Fξ3

+ k1 FFξ1 + Fξ1ξ1ξ1 + k2 Fξ1ξ2ξ2 + k3 Fξ1ξ3ξ3 = 0. (4.7)

It is obvious to see that the reduced (4.7) admits following solutions:

F =
s

k1
(ξ1 + ξ2 + ξ3) for r = p = −2, (4.8a)

F =
1

ξ21
for s = −1, k1 = −12, (4.8b)

F =
1

ξ22
for r = 3s+ 1 (4.8c)

F =
1

ξ23
for p = 3s+ 1 (4.8d)
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with the aid of (4.5) back substituting (4.8) into (4.6), we get exact solution for (1.13)
as follow:

u =
3λ

3 s+ 1
+ (q − t)

s+ 1
3 ×

[
x

(q − t)
1
3

− 3k1λ (q − t)
−s− 1

3

s (3 s+ 1)

+
3κ

(q − t)
1
3

+
(y + 3ν)

(q − t)
− r

6
+

(z + 3µ)

(q − t)
− p

6

]
, (4.9a)

u = − 3λ

2
+ (q − t)

− 2
3

[
x

(q − t)
1
3

+
48λ (q − t)

2
3

2
+

3κ

(q − t)
1
3

]−2

, (4.9b)

u =
3λ

3 s+ 1
+ (q − t)

s+ 1
3

[
1

(q − t)
− r

6

(
y − 6ν

r

)]−2

, for r = 3s+ 1 (4.9c)

u =
3λ

3 s+ 1
+ (q − t)

s+ 1
3

[
1

(q − t)
− p

6

(
z − 6µ

p

)]−2

, for p = 3s+ 1, (4.9d)

along with coefficient constraints (4.3) solutions (4.9) actually satisfies the Vc-ZK
(1.13).

5. Nontrivial local conservation laws

In general, for a given PDE or a system of PDEs, nontrivial local conservation
laws arise from the product of PDE with suitable function(also known as multiplier,
factor or characteristics). Such a combination of the product always yields nontrivial
divergence expression [4]. In actual practice, the PDE is multiplied by a multiplier
and then expressed in some sort of exact expression(or divergence expression) by the
use of certain operator called Euler’s operator. In such construction, the divergence
expression always vanishes on the solution space of PDE. Below, a step-wise procedure
is described for the construction of nontrivial local conservation laws.
The procedure starts with considering the following Euler operator concerning variable
uj

Euj =
∂

∂uj
−Di

∂

∂uji
+ · · ·+ (−1)sDi1 . . . Dis

∂

∂uji1...is
, (5.1)

for each j = 1, . . . ,m, and Di is the total derivative operator with respect to ith
independent variable and is defined as Di =

∂
∂xi +u

µ
i

∂
∂uµ +u

µ
ii1

∂
∂uµ

i1

+uµii1i2
∂

∂uµ
i1i2

+ . . .

for i = 1, . . . , n. The interesting property of Euler operator (5.1) is that, it can
annihilate any divergence expression of the type DiΦ

i(u). In particular, following is
always true:

Euj (DiΦ
i(x, u, ∂u, . . . , ∂ru)) ≡ 0, j = 1, . . . ,m. (5.2)

The converse of (5.2) is also true, that is, if EujF (x, u, ∂u . . . , ∂ru) ≡ 0, then following
also holds true:

F (x, u, ∂u . . . , ∂ru) ≡ DiΨ
i(x, u, ∂u, . . . , ∂r−1u), i = 1, . . . , n, (5.3)
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holds for functions Ψi(x, u, ∂u, . . . , ∂r−1u). The relation (5.3) leads to the construc-
tion of conservation laws.

Example 5.1. As an illustrative example, consider KdV equation

∆KdV = ut + uux + uxxx = 0. (5.4)

The Euler’s operator (5.1) takes the following form

Eu =
∂

∂u
−
(
Dt

∂

∂ut
+Dx

∂

∂ux

)
+D2

x

∂

∂uxx
−D3

x

∂

∂uxxx
, (5.5)

which truncates after 3rd order x-derivative of u. The total derivatives Dx and Dt

are defined as follow:

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ . . . ,

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ . . . .

It may be proved that Eu (∆KdV ) ̸= 0. However, on multiplying ∆KdV with suit-
able a factor Λ(x, t, u) (also called as zero order multiplier) and under the following
assumption

Eu (Λ(x, t, u)∆KdV ) = Eu (Λ(x, t, u)(ut + uux + uxxx)) ≡ 0. (5.6)

The unknown multipliers Λ(x, t, u) can be obtained. The action of Euler’s operator
in (5.6) yields the following

(Λt + uΛx + Λxxx) + 3Λxxuux + 3Λxuuu
2
x + Λuuuu

3
x

+ 3Λxuuxx + 3Λuuuxuxx = 0. (5.7)

Due to independence of ux and uxx, the equation (5.7) splits into following three
equations

Λt + uΛx + Λxxx = 0,Λxu = 0,Λuu = 0. (5.8)

The solution of (5.8) yields following set of multipliers

Λ1 = 1,Λ2 = u,Λ3 = tu− x. (5.9)

Then from properties (5.2) and (5.3), following divergence expression for KdV (5.4)
may be written

Λ(x, t, u)(ut + uux + uxxx) = Dxψ
1 +Dtψ

2, (5.10)

which further gives local conservation in the following form

Dxψ
1 +Dtψ

2 = 0. (5.11)

The fluxes ψ1, ψ2 can be obtained by direct matching of derivatives in (5.10). The
divergence expression (5.11) vanishes over the solution space of KdV (5.4) implying
the non-triviality of conservation laws.
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Based on procedure described above, the determining equations for zero oder multi-
pliers Λ(x, y, z, t, u) are given as follows:

Eu(Λ(x, y, z, t, u)(ut + a(t)uux + uxxx + b(t)uxyy + c(t)uxzz)) = 0. (5.12)

Under the action of Euler’s operator (5.12) splits into following overdetermined system
of equations in Λ(x, y, z, t, u)

Λuu = 0,Λux = 0,Λuy = 0,Λuz = 0,

a(t)uΛx + b(t)Λxyy + c(t)Λxzz + Λxxx + Λt = 0.
(5.13)

The immediate solution for (5.13) may be obtained as follows:

Λ1 = x−
∫
a(t)u dt, Λ2 = u, Λ3 = F (y, z). (5.14)

The determination of multipliers immediately followed by following identity:

Λ(x, y, z, t, u)(ut + a(t)uux + uxxx + b(t)uxyy + c(t)uxzz)

= Dxψ
1 +Dyψ

2 +Dzψ
3 +Dtψ

4.
(5.15)

Substituting Λ’s from (5.14) and direct matching in (5.15), yields the following set of
conservation laws:

• Λ1 = x−
∫
a(t)u dt.

ψ1 = − 1

3
a (t)u3

∫
a (t) dt+

1

2
a (t)xu2 − 1

3
b (t)uuy,y

∫
a (t) dt

+
1

6
b (t)uy

2

∫
a (t) dt− 1

3
c (t)uuz,z

∫
a (t) dt

+
1

6
c (t)uz

2

∫
a (t) dt− uux,x

∫
a (t) dt+

1

2
ux

2

∫
a (t) dt

+
1

3
b (t)xuy,y +

1

3
c (t)xuz,z + xux,x − ux,

ψ2 = − 1

3
b (t)

(
2uux,y

∫
a (t) dt− uxuy

∫
a (t) dt− 2xux,y + uy

)
,

ψ3 = − 1

3
c (t)

(
2uux,z

∫
a (t) dt− uxuz

∫
a (t) dt− 2xux,z + uz

)
,

ψ4 = − 1

2
u

(
u

∫
a (t) dt− 2x

)
.

The divergence expression

Dxψ
1 +Dyψ

2 +Dzψ
3 +Dtψ

4 =

(ut + a (t)uux + ux,x,x + b (t)ux,y,y + c (t)ux,z,z)x

+
(
−uxa (t)u2 − ux,z,zuc (t)− ux,y,yub (t)− uut − uux,x,x

) ∫
a (t) dt,

(5.16)
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vanishes over the solution space of (1.13) implying the non-triviality of con-
servation laws.

• Λ1 = u.

ψ1 =
1

3
a (t)u3 +

1

3
c (t)uuz,z −

1

6
c (t)uz

2 +
1

3
b (t)uuy,y

− 1

6
b (t)uy

2 + uux,x − 1

2
ux

2,

ψ2 =
1

3
b (t) (2uux,y − uxuy) ,

ψ3 =
1

3
c (t) (2uux,z − uxuz) ,

ψ4 =
1

2
u2.

The divergence expression

Dxψ
1 +Dyψ

2 +Dzψ
3 +Dtψ

4 =

u (ut + a (t)uux + ux,x,x + b (t)ux,y,y + c (t)ux,z,z) .
(5.17)

vanishes over the solution space of (1.13) implying the non-triviality of con-
servation laws.

• Λ1 = F (y, z).

ψ1 =
1

2
a (t)Fu2 − 1

3
c (t)Fzuz −

1

3
b (t)Fyuy +

1

3
c (t)Fuz,z

+
1

3
b (t)Fuy,y +

1

3
c (t)uFzz +

1

3
b (t)uFyy + Fux,x,

ψ2 = − 1

3
b (t) (Fyux − 2Fux,y) ,

ψ3 = − 1

3
c (t) (Fzux − 2Fux,z) ,

ψ4 =Fu.

The divergence expression

Dxψ
1 +Dyψ

2 +Dzψ
3 +Dtψ

4 =

F (y, z) (ut + a (t)uux + ux,x,x + b (t)ux,y,y + c (t)ux,z,z) .
(5.18)

vanishes over the solution space of (1.13) implying the non-triviality of con-
servation laws.

6. Conclusion

In this work, the Zakharov-Kuznetsov equation in magnetized dusty plasma is
derived by the reductive perturbation technique. This equation has been further
constrained by plugging variable coefficients to incorporate more realistic means of the
physical phenomenon in plasma physics. In this investigation, the classical symmetries
using the Lie method and new generalized symmetries using the compatibility method
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are obtained and compared. In the comparison, it has been proved that the new
generalized symmetries (3.5) reduce to classical symmetries (2.7) for c5 = c6 = 0.
Some simple traveling wave solutions for Vc-ZK are also presented. In addition to
this, the multiplier method is used to construct nontrivial local conservation laws.
To prove the non-triviality of conservation laws, it has been proved at (5.16), (5.17)
and (5.18) that the divergence expression for fluxes vanishes over the solution space
of equation (1.13).
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