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Abstract In this paper, a type of time-fractional Fokker-Planck equation (FPE) of the Ornstein-

Uhlenbeck process is solved via Riemann-Liouville and Caputo derivatives. An ana-
lytical method based on symmetry operators is used for finding reduced form and ex-
act solutions of the equation. A numerical simulation based on the Müntz-Legendre
polynomials is applied in order to find some approximated solutions of the equation.
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1. Introduction

When one is confronted with a complicated system of PDEs or FDEs (fractional
differential equations) arising from some physically important problem, the discov-
ery of any explicit solutions whatsoever is of great interest. Explicit solutions can
be used as a models for physical experiments, as benchmarks for testing numerical
methods, etc., and often reflect the asymptotic or dominant behavior of more general
types of solutions. Thus, an analytic and powerful method is needed for this purpose.
Symmetry analysis of differential equations is a method based on finding some dif-
ferential operators (vector fields) called symmetries. These operators are the largest
local group of transformations acting on the independent and dependent variables of
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the system with the property that they transform solutions of the system to other
solutions. The determination of symmetry group of geometric object can be regarded
as a special case of the general equivalence problem. Indeed, provided it lies in the
admissible class of changes of variables, a symmetry is merely a self-equivalence of
the object. Thus, for instance, the solution of the equivalence problem for differen-
tial equations will include a determination of all symmetries of a given differential
equation. Two equivalent objects have isomorphic symmetry group, indeed, conju-
gating any symmetry of the first object by the equivalence transformation produces
a symmetry of the second. Thus, one means of recognizing equivalent objects is by
inspecting their symmetry group: If the two symmetry groups are not equivalent, e.g.,
they have different dimensions, or different structures, then the two objects cannot be
equivalent. Of course, having isomorphic symmetry groups is no guarantee that the
two objects are equivalent; nevertheless, in many highly symmetric cases, including
linearization problems, the existence of a suitable symmetry group is both necessary
and sufficient for the equivalence of two objects.

One of the most important application of symmetry’s method is the reducing sys-
tems of differential equations, i.e., finding equivalent systems of differential equations
of simpler form, that is called reduction. This method provides a systematic compu-
tational algorithm for determining a large classes of special solutions. The solutions
of the obtained equivalent system will correspond to solutions of the original system.
There is a lot of papers in the literature for this process and one can find the classical
reduction method in [13, 16, 17, 18, 33].

The fractional calculus can be used to the modeling of the processes from various
fields of physics and engineering, also these calculations have so many applications
in many branches of sciences besides mathematics and physics such as economics,
biology, viscoelasticity (for example, see [4, 5, 7, 19, 20, 21, 24, 25, 26, 36, 37]).
Therefore, by considering applications, solving equations in the fractional differential
range is very important. From the past to the present, there are different fractional
derivatives, for example, the Riemann-Liouville, modified Riemann-Liouville, Caputo,
Caputo-Fabrizio and etc. Some of the fractional calculus are based on space-time
fractional derivatives and the other includes space-fractional derivatives (fractional
Laplacian) and the rest of them, are obtained by replacing time-fractional order α by
integer order n. The third type of equations is more general than the other types of
FDEs and PDEs.

A method for solving ODEs and PDEs via Lie symmetries are established by
Sophus Lie (1842-1899) and for FDEs by Gazizov et al. [11]. Towards the end of
the nineteenth century, Sophus Lie introduced the notion of Lie group in order to
study the solutions of ODEs. He showed the following main property: the order of
an ODE can be reduced by one if it is invariant under one-parameter Lie group of
point transformations. This observation unified and extended the available integration
techniques. Lie devoted the remainder of his mathematical career to developing these
continuous groups that have now an impact on many areas of mathematically based
sciences. The applications of Lie groups to differential systems were mainly established
by Lie and Emmy Noether, and then advocated by Elie Cartan.
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It is necessary to mention that Gazizov et al. investigated the Lie symmetry
method for an equation with Riemann-Liouville and Caputo derivative. An important
advantage of Lie symmetry method as it discussed above, is to find an equivalent
equation called reduced equation. This reduced equation obtained from similarity
variables constructed from symmetry operators of the equation. These equations give
an exact solution for the primary equation called similarity or group-invariant solution
[2, 15, 34, 38]. It is noteworthy that the advantage of Lie symmetry method is that,
it is free of the kind of a given system. So, this makes the Lie symmetry method as
one of the best candidate for solving a system of differential equations.

The Fokker-Planck equations are the worthful tools to manage fluctuations in a
large range of dynamic systems and have been widely used in various field of sciences
such as physics, mathematical finance, chemistry, and etc. Specially in physics the
Fokker-Planck equations are used to modeling of the complex dynamics, for instance,
quantum mechanics, astrophysics, statistical physics, and are applied to the protein
folding biophysics problem [30]. In financial mathematics, the Fokker-Planck equa-
tions are applied for example to explain the behavior of returns for foreign exchange
markets in different time scales [12, 31].

Exact and numerical solutions of these equations are presented in a lot of papers.
The applied methods for solving of these equations are so different. For example,
in [14], numerical solution of the stationary and transient form of the Fokker-Planck
equation are obtained by standard sequential finite element method (FEM) using C0-
shape function and Crank-Nicolson time integration scheme. Lie symmetry analysis
is another method in order to find solutions of Fokker-Planck equations [6]. In fact
this analysis classifies the solution format of the Fokker-Planck equation by the Lie
algebra of symmetries.

The time-fractional Fokker-Plank equation for Ornstein-Uhlenbeck process

Dβ
t p−

1

2
σ2 ∂

2p

∂x2
− αp− αx

∂p

∂x
= 0, (1.1)

is the main purpose of the present work, where β is the fractional order with 0 < β < 1.
Symmetry analysis in the case of β = 1 is furnished by E. Dastranj and S. R. Hejazi
[6].

The paper is organized as follows. In section 2 some properties of the Riemann-
Liouville and the Caputo derivative are presented. In section 3 the Lie symmetries of
the time-fractional PDE for the Ornstein-Uhlenbeck process are constructed. Finally,
section 4 includes the classical basis polynomials like Legendre, Laguerre, and Cheby-
shev polynomials, which are widely used to deal with many problems of dynamic
systems. Since solutions of fractional differential equations can contain some frac-
tional power terms, classical polynomials are not a reasonable suggestion for solving
these problems [10]. Consequently, we have to consider suitable basis polynomials in
the proposed numerical technique. In this section, we consider Müntz-Legendre poly-
nomials (MLPs), which are a family of generalized orthogonal polynomials. These
polynomials have been introduced and discussed in [3].
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2. Preliminaries Of Fractional calculus And The Lie Groups Method

Some basis concepts should be mentioned before starting the main sections.

2.1. Definition and Properties. Let us recall some usual properties of Riemann-
Liouville and Caputo fractional time derivatives of order β:

Definition 2.1. The left-hand-sided of the Riemann-Liouville derivative (aDβ
t ) and

the right-hand-sided of the Riemann-Liouville derivative (tDβ
b ) are defined as following

condition,

aDβ
t p(x, t) =

1

Γ(n− β)

∂n

∂tn

∫ t

a

p(x, s)

(t− s)β+1−n
ds,

0 < n− 1 < β < n, (2.1)

tDβ
b p(x, t) =

(−1)n

Γ(n− β)

∂n

∂tn

∫ b

t

p(x, s)

(s− t)β+1−n
ds,

0 < n− 1 < β < n, (2.2)

aDβ
t p(x, t) = tDβ

b p(x, t) =
∂np

∂tn
, β = n ∈ N. (2.3)

Definition 2.2. The left-hand-sided of the Caputo fractional derivative (Ca D
β
t ) and

the right-hand-sided of the Caputo fractional derivative (Ct D
β
t ) are:

C
a D

β
t p(x, t) =

1

Γ(n− β)

∫ t

a

1

(t− s)β+1−n

∂np(x, s)

∂sn
ds,

n− 1 < β < n, (2.4)

C
t D

β
b p(x, t) =

(−1)n

Γ(n− β)

∫ b

t

1

(t− s)β+1−n

∂np(x, s)

∂sn
ds,

n− 1 < β < n, (2.5)

C
a D

β
t p(x, t) =

C
t D

β
b p(x, t) =

∂np

∂tn
, β = n ∈ N. (2.6)

Before giving some properties of these derivatives, a blanket hypothesis is consid-
ered, that is all considered derivatives are the left type in the sequel. A number of
properties are expressed as follows:
• The Riemann-Liouville and Caputo derivatives are non-local due to operator inte-
gral in their definitions.

•Dβ
t t

γ =
Γ(γ + 1)

Γ(γ − β + 1)
tγ−β , (2.7)

•Dβ
t f(x, t) = 0 =⇒ f(x, t) =

m∑
j=1

cjt
β−j . (2.8)

•L{0Dβ
xf(x); s} = sβF (s)−

n−1∑
k=0

skDβ−k−1f(0+), (2.9)

•L{C0 D
β
t f(x); s} = sβF (s)−

n−1∑
k=0

sβ−k−1f (k)(0+), n− 1 < β ≤ n. (2.10)
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where L{0Dβ
xf(x); s} and L{C0 Dβ

xf(x); s} are the Laplace transform of Riemann-
Liouville and Caputo derivatives respectively.

2.2. Lie group analysis of time-fractional PDE (1.1). The results of Lie sym-
metry method for FDEs are the same as PDEs almost every where, for further details,
readers are referred to [11]. The symmetry group of the Eq. (1.1) will be formed by
the vector field or the infinitesimal operator of the form

X = τ(x, t, p)
∂

∂t
+ ξ(x, t, p)

∂

∂x
+ η(x, t, p)

∂

∂p
. (2.11)

Thus, the Eq. (1.1) admits (2.11) as an infinitesimal generator of a Lie point symmetry
if

X(β,2)

(
Dβ

t p−
1

2
σ2pxx − αp− αxpx

)
= 0, (2.12)

where X(β,2) denotes the second prolongation of operator 2.11 and in the meantime
satisfies the following equation:

X(β,2) = X + ηβt
∂

∂pβt
+ ηx

∂

∂px
+ ηxx

∂

∂pxx
. (2.13)

Regarding the symmetry condition (2.13), the prolongation’s coefficients ηx, ηxx and

ηβt that must satisfy the following invariance identity:

ηβt − 1

2
σ2ηxx − αη − αξpx − αxηx = 0, (2.14)

where ηx, ηxx and ηβt obtained by

ηβt = Dβ
t (η − τpt − ξpx) + τDβ

t (ut) + ξDβ
t (ux), (2.15)

ηx = Dx(η − τut − ξux) + τutx + ξuxx,

ηxx = Dxx(η − τut − ξux) + τutxx + ξuxxx.

The expanded forms of the above equations are written by using the total derivative
operatorDx, the generalized chain rule, and the generalized Leibnitz rule, for example:

ηβt =
∞∑

n=1

[(
β

n

)
∂nt ηu −

(
β

n+ 1

)
Dn+1

t (τ)

]
∂β−n
t u+ ∂βt η − u∂βt ηu

−
∞∑

n=1

(
β

n

)
Dn

t (ξ)∂
β−n
t (ux) + [ηu − βDt(τ)] ∂

β
t u+ µ, (2.16)

where

µ =

∞∑
n=2

n∑
m=2

m∑
k=2

(
β

n

)(
β

m

)
tn−βUk

k!Γ(n+ 1− β)

∂n−m+kη

∂tn−m∂uk
,

and

Un =
n∑

k=0

(−1)k
(
n

k

)
gk(t)∂βt (g

n−k(t)).
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Substituting the values of Eqs. (??) into (2.14), together with Eq. (1.1), the deter-
mining system for invariance condition (2.14) is derived. The solution of this system
gives

τ = C2βσ
2x− C4σ

2,

ξ = 2C2σ
2t+ C1σ

2,

η = C2βσ
2p− C2αβpx

2 + C4αpx+ C5p− C2σ
2p (2.17)

as the coefficients of the symmetry operator (2.11) where Ci(i = 1, 2, 3) are arbitrary
constants. Thus, in terms of the Lie symmetry analysis method, Eq. (1.1) admits the
following generators:

X1 = βσ2x
∂

∂x
+ 2σ2t

∂

∂t
+

(
βpσ2 − pβαx2 − σ2p

) ∂

∂p
,

X2 = −σ2 ∂

∂x
+ pαx

∂

∂p
,

X3 = p
∂

∂p
. (2.18)

As regards the Eq. (1.1) has Riemann-Liouville derivative, so this equation doesn’t
admit ∂

∂t as a geometric vector field [32].

3. Similarity reductionss

In this section, some discussions on similarity reductions of the Eq. (1.1) are given.
The method of obtaining the group invariant solution on FDEs is the same as PDEs.

Case1. For the generator X2 readers are referred to [12], Habibi et al. in their
study reduced FPDE to another form.

Case2. For the generator X1, the similarity variable and similarity solution will
be found by solving the associated characteristic equation

dx

βσ2x
=

dt

2tσ2
=

dp

βσ2p− pβαx2 − σ2p
. (3.1)

Integration from (3.1) gives the invariants

t
β
√
x2

and
x1−

1
β e−

αx2

2σ2

p(x, z)
. (3.2)

Consequently, we have

p(x, z) =
x1−

1
β e−

αx2

2σ2

g(z)
. (3.3)
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Substituting p(x, z) and derivatives with respect to x into (1.1), one can obtain the
reduced ODE form of Eq. (1.1) such as following:

−1

2
σ2 ∂

2p

∂x2
− αp− αx

∂p

∂x
=

σ2x−1− 1
β

2g(z)e
αx2

2σ2

(
1

β

)(
1− 1

β

)

− α2x3−
1
β

2σ2g(z)e
αx2

2σ2

+
αx1−

1
β

2g(z)e
αx2

2σ2

+
σ2g′′(z)x1−

1
β

2g2(z)e
αx2

2σ2

z′
2
+
σ2g′(z)x1−

1
β

2g2(z)e
αx2

2σ2

z′′

− σ2g′2(z)x1−
1
β

g3(z)e
αx2

2σ2

z′
2
+
σ2g′(z)x−

1
β

g2(z)e
αx2

2σ2

× z′
(
1− 1

β

)
− αx1−

1
β

g(z)e
αx2

2σ2

+
α2x3−

1
β

σ2g(z)e
αx2

2σ2

, (3.4)

where

g(z) =
x1−

1
β e−

αx2

2σ2

p(x, z)
,

satisfies the above equation and z′, z′′ are derivatives respect to x and g′(z), g′′(z) are
derivatives respect to z. Thus, the fractional part of Eq. (1.1) is described by:

Dβ
t p(t, x) =

1

Γ(1− β)

∂

∂t

∫ t

0

p(τ, x)dτ

(t− τ)
β

=
1

Γ(1− β)

∂

∂t

∫ t

0

x1−
1
β e−

αx2

2σ2 dτ

g
(

τ
β√
x2

)
(t− τ)β

. (3.5)

Let us assume that y = τ
β√
x2
,
(
dτ =

β
√
x2dy

)
and in the meantime, according to our

previous notation that, t = z
β
√
x2,

(
∂
∂t =

1
β√
x2

∂
∂z

)
, so

Dβ
t p(t, x) =

x−1− 1
β e−

αx2

2σ2

Γ(1− β)

∂

∂z

∫ z

0

dy

g(z)(z − y)β

= x−1− 1
β e−

αx2

2σ2 Dβ
z

(
1

g(z)

)
. (3.6)
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Considering z as a new independent variable, x as prior independent variable and g
as the new dependent variable Eq. (1.1) converts to:

x−1− 1
β Dβ

z

(
1

g(z)

)
=

α

2g(z)
x1−

1
β − σ2g′′(z)

2g2(z)
z′

2
x1−

1
β

− σ2g′(z)

g2(z)
z′(1− 1

β
)x−

1
β

− σ2

2g(z)

(
1

β

)(
1− 1

β

)
x−1− 1

β (3.7)

− σ2g′(z)

g2(z)
z′′x1−

1
β − α2

2σ2g(z)
x3−

1
β .

We will use the symbol h(z) to denote 1
g(z) . By using this placement, we have the

following derivatives:

h(z) =
1

g(z)
, (3.8)

h′(z)z′ = −g
′(z)z′

g2(z)
,

h′′(z)z′2 + h′(z)z′′ =
−g′′(z)z′2g2(z)− g′(z)z′′g2(z) + 2g(z)g′2(z)z′2

2g4(z)
.

By applying the above derivatives Eq. (1.1) transforms to,

Dβ
z (h(z)) = h(z)

[
− (β − 1)σ2

2β2
− α2x4

2σ2
+
αx2

2

]
+ h′′(z)

(
z′σ2x2

2

)
+ h′(z)

[
z′′σ2x2

2
+
z′(β − 1)σ2x

α

]
. (3.9)

Now, a solution for (3.9) with new symmetries is investigated in the sequel. The use
of Lie algorithm method again, concludes that

Y1 =
∂

∂x
, Y2 = h

∂

∂h
. (3.10)

are two symmetries for Eq. (3.9).
The symmetry Y1 + Y2 yields the following associated Lagrange’s equation

dx

1
=
dz

0
=
dh

h
. (3.11)

By solving the above statement, the similarity variables z and ex

h(z) are obtained.

Therefore a solution for Eq. (3.9) is written by,

h(z) =
ex

k(z)
. (3.12)

According to Eq. (3.7), h(z) = 1
g(z) so g(z) = k(z)

ex . On the other hand p(x, z) =

x
1− 1

β e
−αx2

2σ2

g(z) is a solution for Eq. (1.1), then another solution for Eq. (1.1) is considered
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by:

p(x, z) =
x1−

1
β ex−

αx2

2σ2

k(z)
. (3.13)

4. Numerical simulation

In this section, we will propose a numerical solution for the equation

CDβ
t p =

1

2
σ2 ∂

2p

∂x2
+ αp+ αx

∂p

∂x
, (4.1)

with the initial conditions as follows

p(0, t) = ϕ1(t), (4.2)

∂p

∂x
(0, t) = ϕ2(t), (4.3)

p(x, 0) = ψ(x), (4.4)

where x, t ∈ [0, T ]. Since that is not the focus of this work, we briefly describe
an efficient numerical method to perform it here. The readers are recommended
[22, 23, 27, 28, 39] for another useful numerical methods about our purpose.

4.1. Müntz–Legendre polynomials. In this part of paper, we consider a special
case of MLPs discussed in [10] that are defined on the interval [0, T ] by:

Ln,β(t) :=

n∑
k=0

Cn,k

(
t

T

)kβ

, Cn,k =
(−1)n+k

βnk!(n− k)!

n−1∏
v=0

((k + v)β + 1). (4.5)

Also, they are orthogonal with respect to inner product on the interval [0, T ] with the
weight function ω(x) = 1, i.e.

(Ln,β , Lm,β) =

∫ T

0

Ln,β(t)Lm,β(t)dt =
T

2nβ + 1
δnm. (4.6)

Any function f(t) ∈ L2[0, T ] can be approximated in terms of MLPs as

f(t) =
∞∑

n=0

cnLn,β(t), cn =
(2nβ + 1)

T

∫ T

0

f(t)Ln,β(t)dt.

Theorem 4.1. Let CDβi
t f(t) ∈ C(0, T ] be bounded on [0, T ] for i = 0, · · · , N +1 and

0 < β ≤ 1. Then function f(t) can be approximated by N + 1 terms of MLPs such
that

∥f(t)−
N∑

n=0

cnLn,β(t)∥∞ ≤ k1
Γ((N + 1)β + 1)

,

where k1 = ∥CD(N+1)β
t f(t)∥.

Proof. See [9]. □
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We also recall important property of MLPs. The fractional derivative of MLPs is
defined as

CDβ
t Ln,β(t) =

n∑
k=⌈β⌉

Dn,kt
(k−1)β , Dn,k =

Γ(kβ + 1)

T kβΓ(kβ + 1− β)
Cn,k.

Proposition 4.2. For β = 1, MLPs (4.5) are shifted Legendre polynomials on the
interval [0, T ]. An evaluation of MLPs in the form (4.5) can be problematic in finite
arithmetic, especially when n is a large number and x is close to 1. For this reason
we use the following theorem which is proved in [10].

Theorem 4.3. Let β > 0 be a real number and J
(0,−1+1/β)
T,n (t) be the Jacobi polynomial

with parameters a = 0, b = −1 + 1
β on the interval [0, T ]; then for MLPs we have

Ln,β(t) = J
(0,−1+1/β)
T,n

[
2

(
t

T

)β

− 1

]
. (4.7)

So, in view of (4.5) and (4.6), the MLPs Ln,β(t) can be obtained by means of the
three-term recursion formula. We should remark that, using the analytical form of
MLPs can be written as [10]

Ln,β(t) =

n∑
k=0

(−1)n−k
Γ(n+ 1

β )Γ(n+ k + 1
β )

Γ(k + 1
β )Γ(n+ 1

β )(n− k)!k!

(
t

T

)kβ

. (4.8)

4.2. Direct collocation. In this part, we will approximate the solution of the prob-
lem as follows

p(x, t) ≃ pN (x, t) =
N∑

m=0

N∑
n=0

pmnLm,β(x)Ln,β(t),

where umn, m = n = 0, 1, · · · , N are unknown coefficients and should be determined
by our presented method and Lm,β(x) and Ln,β(t) are the MLPs of order m and n,
respectively.

It should be noted that in some research works [1, 8], the authors used an opera-
tional matrix of fractional differentiation to solve the problems of this type. However,
in this part, we compute the Caputo fractional derivative of order β by some suitable
commands in mathematical softwares such as Maple or Matlab. The fractional deriv-
ative of order β can be determined using the following command in Maple software

CDβ
t f(t) = fracdiff(f(t), t, β).

Using this command the fractional and second derivative which we need in our ap-
proach could be computed. Since there exist (N+1)2 unknown coefficients umn, m =
n = 0, 1, · · · , N we should construct system of (N +1)2 algebraic equations. Suppose
that xi and ti are the N +1 roots of Chebyshev polynomials TN+1(x) on the interval
[0, T ] which are defined as

ti =
T
2 − T

2 cos
[
(2i−1)π
2(N+1)

]
, i = 1, 2, . . . , N + 1,

xi =
T
2 − T

2 cos
[
(2i−1)π
2(N+1)

]
, i = 1, 2, . . . , N + 1.
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Now, we discretize equation (4.1) using the points ti, xi as

CDβ
t pN (xi, ti) =

1

2
σ2 ∂

2pN
∂x2

(xi, ti) + αpN (xi, ti) + αxi
∂pN
∂x

(xi, ti),

and the initial conditions (4.2)-(4.4) as follows

p(0, ti) = ϕ1(ti),

∂p

∂x
(0, ti) = ϕ2(ti),

p(xi, 0) = ψ(xi).

In this case, the considered equations are collocated and then transformed into the
associated systems of (N +1)2 algebraic equations and (N +1)2 unknowns which can
be solved through an iterative method in Maple software by fsolve command. In the
following, we consider a numerical example and check the accuracy of our proposed

numerical approach by replacing the pN (x, y),Dβ
t pN , ∂2pN

∂x2 , pN and ∂pN

∂x in equations
(4.1)-(4.4). Then (4.1) can be satisfied approximately. In other words, we define the
absolute error as

E(x, t) =
∣∣∣CDβ

t p−
1

2
σ2 ∂

2p

∂x2
− αp− αx

∂p

∂x

∣∣∣ → 0. (4.9)

Example 4.4. Let β = 0.9, σ = 0.2, T = 1 and α = −0.02 in equation (4.1). Thus
we have

CD0.9
t p = 0.02

(
∂2p

∂x2
− p− x

∂p

∂x

)
, (4.10)

with initial conditions as follows

p(0, t) = 1, (4.11)

∂p

∂x
(0, t) = 0, (4.12)

p(x, 0) = e
1
2x

2

. (4.13)

Diagrams of the solution using the suggested numerical method are shown in Figure
1. The absolute error E(x, t) is also depicted in Figure 2. In Table 2 we determined the
CPU time for different values of N . The rate of convergence of the Müntz-Legendre
polynomials are discussed in several papers such as [29, 35]. It worth mentioning
that in these papers the superiority of Müntz-Legendre basis in compared with the
classical polynomials is shown by several examples. The Table 1 shows the rate of
convergence of the method with increasing the number of N .

5. Concluding remark

In the previous research the Lie group analysis for system of differential equations
is extended to fractional system. This extension is applied for solving an important
PDE in financial mathematics called time-fractional Fokker-Planck equation of the
Ornstein-Uhlenbeck process. Symmetries are found and some reductions are presented
by similarity variables extracted from symmetries. As it shown this method is an
algorithmic method which could be applied for every kind of system of differential



CMDE Vol. 9, No. 1, 2021, pp. 258-272 269

Figure 1. Numerical solution pN (x, t) with N = 10.

Table 1. Some numerical results of pN (x, y) for different values of N .

(x, t) N = 4 N = 8 N = 10
(0.1, 0.1) 3.937852E−04 5.247359E−08 1.441447E−10
(0.2, 0.2) 2.891708E−05 3.090832E−09 1.194652E−10
(0.3, 0.3) 1.765937E−04 1.110404E−08 1.543577E−10
(0.4, 0.4) 4.929371E−05 1.981757E−08 7.376778E−11
(0.5, 0.5) 3.818000E−20 1.011751E−19 7.700786E−21
(0.6, 0.6) 2.496016E−05 1.496851E−08 1.136318E−10
(0.7, 0.7) 1.364715E−04 1.497029E−08 1.271956E−10
(0.8, 0.8) 2.601971E−05 1.161986E−08 2.063365E−10
(0.9, 0.9) 3.759005E−04 3.348389E−08 2.014449E−10
(1, 1) 3.694219E−03 6.744763E−07 3.931629E−09

equation. But if the variables and the order of system increase, computations are also
increase. Thus, some computational softwares such as Maple and Mathematica are
needed. Finally numerical simulation based on Müntz-Legendre polynomials (MLPs),
which are a family of generalized orthogonal polynomials, is given.
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Figure 2. Absolute error E(x, t) of the presented method for N = 10.

Table 2. CPU time for different values of N .

N N = 4 N = 8 N = 10
CPU time 0.187 2.996 11.263
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mials, Transactions of the American Mathematical Society, 342(2) (1994), 523–542.
[4] Michele Caputo, Modeling social and economic cycles, in Alternative Public Economics, Forte

F., Navarra P., Mudambi R.( Eds.), Elgar, Cheltenham, 2014.
[5] S. Das, Functional Fractional Calculus for System Identification and Controls. Springer-Verlag,

Berlin, Heidelberg, 2008.

[6] E. Dastranj and S. R. Hejazi, New Solution for Fokker-Plank Equation of Special Stochastic
Process with Lie Point Symmetries, Computational Methods for Differential Equations, 5(1)
(2017), 30–42.

[7] E. Dastranj and S. R. Hejazi, Exact solutions for Fokker-Plank equation of geometric Brownian

motion with Lie point symmetries, Computational Methods for Differential Equations, 6(3)
(2018), 372–379.



CMDE Vol. 9, No. 1, 2021, pp. 258-272 271

[8] E. H. Doha, A. H. Bhrawy, and S. Ezz-Eldien, A New Jacobi Operational Matrix: An Application
For Solving Fractional Differential Equations, Applied Mathematical Modelling, 36(10) (2012),
4931–4943.

[9] N. Ejlali and S. M. Hosseini, A pseudospectral method for fractional optimal control problems,
Journal of Optimization Theory and Applications, 174(1) (2017), 83–107.

[10] S. Esmaeili, M. Shamsi, and Y. F. Luchko, Numerical solution of fractional differential equa-
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