تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,022 |
تعداد مشاهده مقاله | 52,493,422 |
تعداد دریافت فایل اصل مقاله | 15,219,727 |
واکنش عددی دموگرافیک سن شکارگر Nesidiocoris tenuis Reuter (Hem.: Miridae) به تراکم های مختلف تخم بید گوجه فرنگی Meyrick (Lep.: Gelechiidae) Tuta absoluta | ||
پژوهش های کاربردی در گیاهپزشکی | ||
مقاله 5، دوره 8، شماره 4، اسفند 1398، صفحه 61-80 اصل مقاله (1.53 M) | ||
نویسندگان | ||
فاطمه شهریاری نسب* 1؛ شهزاد ایرانی پور2؛ شهریار عسگری3 | ||
1دانشجوی سابق رشته ی حشره شناسی کشاورزی گروه گیاهپزشکی دانشگاه تبریز. | ||
2استاد رشته ی حشره شناسی کشاورزی گروه گیاهپزشکی دانشگاه تبریز. | ||
3استادیار مرکز تحقیقات کشاورزی و منابع طبیعی استان تهران. | ||
چکیده | ||
چکیده بید گوجهفرنگی Meyrick (Lep.: Gelechiidae) Tuta absoluta از آفات قرنطینهای است که در سالهای اخیر وارد کشور شده و تولید گوجهفرنگی را با مشکل مواجه کرده است. سن شکارگر Nesidiocoris tenuis Reuter (Hem.: Miridae) اخیراً بهعنوان عامل کنترل زیستی بالقوه برای بیدگوجهفرنگی مطرح شده است. در این مطالعه، فراسنجههای زیستی این شکارگر در قالب واکنش عددی دموگرافیک به تراکمهای مختلف تخم بیدگوجهفرنگی، در شرایط آزمایشگاهی (دمای °C1±25، رطوبتنسبی 10±65% و دورة نوری 16: 8 ساعت روشنایی: تاریکی) تعیین گردید. برای پورههای سن اول تا پنجم و افراد بالغ بهترتیب تراکمهای10، 20، 30، 40، 50 و 60 شکار (تراکم بالا)؛ 5، 10، 15، 20، 25 و 30 شکار (تراکم میانی) و 2، 5، 7، 10، 12 و 15 شکار (تراکم پایین) و یک تیمار بدون شکار در نظر گرفته شدند. N. tenuis بدون حضور شکار تا مرحلة دوم پورگی زنده ماند. در بالاترین تراکم شکار، دورة پیش از بلوغ و طول عمر حشرات نر و ماده بهترتیب 19/0±62/21، 02/1±2/18 و 70/1±21/24 روز بهدست آمد؛ زادآوری مادهها 26/16±71/100 پوره بود؛ نرخ خالص زادآوری (R0) ، نرخ ذاتی افزایش جمعیت (r)، و مدت زمان یک نسل (T) بهترتیب 48/10±57/40 پوره/فرد، 009/0±119/0 بر روز، و 543/0±88/30 روز برآورد شد. زادآوری سن شکارگر با تغذیه از تراکم بالای شکار هفت برابر و با تغذیه از تراکم میانی، سه برابر بیشتر از تراکم پایینی بود. این نتایج بیان میکند که N. tenuis میتواند در شرایط کمتر از بهینه (حدسیری)، بقای خود را حفظ کند و تا اتمام کامل منبع شکار، بید گوجهفرنگی را کنترل کند. | ||
کلیدواژهها | ||
واژههای کلیدی: جدول زندگی؛ زادآوری؛ کنترل زیستی | ||
مراجع | ||
احمدی ر، ۱۳۹۲. روشهای مدیریت و کنترل تلفیقی (IPM) شبپره مینوز گوجهفرنگی Tuta absoluta meyrick. اولین همایش ملی توسعه پایدار کشاورزی با کاربرد الگوی زراعی، 24 بهمن، همدان، بازیابی شده از آدرس http://www.civilica.com/Paper-SAUCM01-SAUCM01_120.html در 12 اردیبهشت 1393، 9 صفحه. ارکانی ت، حسینی ر و وفاییشوشتری ر، 1390. بررسی فون خانواده Miridae و تعیین گونه غالب در مزارع و باغات شهرستان اراک و حومه. فصلنامه تخصصی تحقیقات حشرهشناسی، جلد3، شماره 2، صفحههای 85 تا 93. حسنپور م، 1388. مطالعهی برخی ویژگیهای زیستی و شکارگری بالتوری سبز، Chrysoperla carnea (Stephens) و سن Orius albidipennis (Reuter) روی کرم غوزهی پنبه، Helicoverpa armigera Hubner و کنهی دولکهای، Tetranychus urticae Koch. رسالهی دکتری حشرهشناسی کشاورزی، دانشکده کشاورزی دانشگاه تبریز. رمضانی ل و ضرغامی س، 1396. ارزیابی تأثیر مرحله رشدی طعمه بر واکنش عددی کفشدوزک شپشکخوار Nephus arcuatus Kapur. تحقیقات آفات گیاهی، جلد 7، شماره 2، صفحههای 1 تا 10. زارعی ع، دوستی ا و فلاحزاده م، 1391. بررسی فونستیک خانواده (Hemiptera: Hetroptera) Miridae در منطقه داراب فارس. جلد 1- آفات، صفحه 99، خلاصه مقالات بیستمین کنگره گیاهپزشکی ایران ، دانشگاه شیراز. شمسی م، حسینی ر و شیروانی ا، 1392. شناسایی و معرفی سنهای شکارگر خانواده میریده (Hemiptera: Miridae) در استان کرمان. صفحه 632، سومین همایش ملی مدیریت کنترل آفات، دانشگاه شهید باهنر، کرمان. فیروزی ر، 1390. پروانهی مینوز گوجهفرنگی. سازمان جهاد کشاورزی آذربایجان شرقی، مدیریت هماهنگی ترویج کشاورزی، 14 صفحه. ملکشی ح، طلایی حسنلویی ر، محقق نیشابوری ج و اللهیاری ح، 1396. میزان شکارگری و ترجیح سن شکارگر Nesidiocoris tenuis در تغذیه از تخم بید آرد، Ephestia Kuehniella و تخم بید گوجهفرنگی Tuta absoluta در آزمایشگاه. مهار زیستی در گیاه پزشکی، جلد 5، شماره 1، صفحه 31 تا 43. نوری قنبلانی قدیر (مترجم)، 1380. اکولوژی حشرات (تألیف پیتر دبلیو. پرایس). جلد دوم، انتشارات دانشگاه محقق اردبیلی. Agarwala BK, Bardhanroy P, Yasuda H and Takizawa T, 2001. Prey consumption and oviposition of the aphidophagous predator Menochilus sexmaculatus (Coleoptera: Coccinellidae) in relation to prey density and adult size. EnvironmentalEntomology 30(6): 1182-1187. Barrientos ZR, Apablaza HJ, Norero SA and Estay PP, 1998. Temperatura base y constante térmica de desarrollo de la polilla del tomate, Tuta absoluta (Lepidoptera: Gelechiidae). Ciencia e Investigación Agraria 25: 133–137. Bayliss P and Choquenot D, 2002. The numerical response: rate of increase and food limitation in herbivores and predators. Philosophical Transactions of The Royal Society B Biological Sciences 357: 1233-1248 Biondi A, Zappala L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N and Siscaro G, 2015. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis?. International Organization for Biological Control 61(1): 79-90. Cano M, Vila E, Janssen D, Bretones G, Salvador E, Lara L and Tellez MM, 2009 .Selection of refuges for Nesidiocoris tenuis (Heteroptera: Miridae) and Orius laevigatus (Het.: Anthocoridae): virus reservoir risk assessment. International Organisation for Biological and Integrated Control, WPRS Bulletin, 49: 281–286. Carey JR, 1993. Applied Demography for Biologists with Special Emphasis on Insects. Oxford University Press. Carey JR, 2001. Insect biodemograohy. Annual Review of Entomology 46(1): 79-110. Cauphley G, 1976. Wildlife management and the dynamics of ungulate population.Pp. 183-246 In: Coaker TH (ed.) Applied Biology. Academic Press, London. Chi H, 2015. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. (http://140.120.197.173/Ecology/Download/Twosex-MSChart.zip). Cocuzza GE, Declercq P, van de veire S, De Cock A, Degheele L and Vacante V, 1997. Reproduction of Orius laevigatus and Orius albidipennis on pollen and Ephestia kuehniella eggs. Entomologia Experimentalis et Applicata 82: 101-104. Emden HFV, 1995. Host plant-aphidophaga interactions. Agriculture, Ecosystems & Environment 52(1): 3–11. Gese EM and Knowlton FF, 2001. The role of predation in wildlife population dynamics. USDA National Wildlife Research Center. http://digitalcommons.unl.edu/icwdm_usdanwrc/542. [Accessed on 6 April 2015]. Ghoneim K, 2014. Predatory insects and arachnids as potential biological control agents against the invasive tomato leafminer, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), in perspective and prospective. Journal of Entomology and Zoology Studies 2(2): 52-71. Glen DM, 1975. Searching behaviour and prey-density requirements of blepharidopterus angulatus (Fall.) (Heteroptera: Miridae) as a predator of the lime aphid, Eucallipterus tiliae (L.), and leafhopper, Alnetoidea alneti (Dahlbom). British Ecological Society 44(1): 115-134. Hamdi F, Chadoeuf J, Chermiti B and Bonato O, 2013. Evidence of cannibalism in Macrolophus pygmaeus, a natural enemy of whiteflies. Journal of Insect Behavior 26: 614– 621. Hassel MP, 1978. The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, New Jersey. Hokyo N and Kawauchi S, 1975. The effect of prey size and prey density on the functional response, survival, growth and development of a predatory Pentatomid bug, Podisus maculiventris Say. Researches on Population Ecology 16: 207-218. Hughes GE, 2010. Thermal biology and establishment potential of two non-native candidate biological control agents, Nesidiocoris tenuis Reuter (Hemiptera: Miridae) and Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae). PhD thesis, Entomology, Birmingham University, UK. Ingegno BL, Ferracini C, Gallinotti D, Alma A and Tavella L, 2013. Evaluation of the effectiveness of Dicyphus errans (Wolff) as predator of Tuta absoluta (Meyrick). Biological Control 67: 246–252. Kindlmann P and Dixon AFG, 2002. Insect predator–prey dynamics and the biological control of aphids by ladybirds.Pp. 118-124. Proceedings First International Symposium on Biological Control of Arthropods, Honolulu, Hawaii, USA. Lester PJ and Harmsen R, 2002. Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two-prey system. Journal of Applied Ecology 39: 455-468. May RM, 1981. Models for two interacting populations.Pp. 48-104 In: May RM (ed.) Theoretical Ecology: Principles and Applications. Oxford, Blackwell, UK. Molla O, Biondi A, Alonso-Valiente M and Urbaneja A, 2013. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl 59(2): 175-183. Murdoch WW, 1971. The developmental response of predators to changes in prey density. Ecological Society of America 52(1): 132-137. Perdikis DC and Lykouressis DP, 2004. Macrolophus pygmaeus (Hemiptera: Miridae) population parameters and biological characteristics when feeding on eggplant and tomato without prey. Journal of Economic Entomology 97: 1291–1298. Pereyra PC and Sánchez NE, 2006. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 35: 671–676. Sanchez JA, 2009. Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biological Control 51: 493-498. Sanchez JA, Gillespie DR and Mcgregor RR, 2004. Plant preference in relation to life history traits in the zoophytophagous predator Dicyphus Hesperus. Entomologia Experimentalis et Applicata 112: 7– 19. Sanchez JA, Lacasa A, Arno J, Castane C and Alomar O, 2008. Life history parameters for Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) under different temperature regimes. Journal of Applied Entomology 133: 125–132. Sanchez JA, La-spina M and Lacasa A, 2014. Numerical response of Nesidiocoris tenuis (Hemiptera: Miridae) preying on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops. EuropeanJournalofEntomology, 111(3): 387-395. Tavella L and Goula M, 2001. Dicyphini collected in horticultural areas of northwestern Italy (Heteroptera Miridae). Boll Zool Agrar Bachic, 33(2): 93–102. Urbaneja A, Monton H and Molla O, 2008. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. Journal of Applied Entomology 133: 292–296. Urbaneja A, Tapia G and Stansly P, 2005. Influence of host plant and prey availability on developmental time and surviorship of Nesidiocoris tenius (Heteroptera: Miridae). Biocontrol Science and Technology, 15(5): 513-518. Urbaneja-Bernat P, Alonso M, Tena A, Bolckmans K and Urbaneja A, 2012. Sugar as nutritional supplement for the zoophytophagous predator Nesidiocoris tenuis. BioControl 58(1): 57-64. Vercher R, Calabuig A and Felipe C, 2010. Ecologìa, muestreos y umbrales de Tuta absoluta (Meyrick). Phytoma España 217: 23-26. Zappala L, Biondi A, Alma A, Al-Jboory IJ, Arno J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, GuenaouiY, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Vercher Aznar R, Urbaneja A and Desneux N, 2013. Natural enemies of the south american moth, Tuta absoluta, in europe, north africa and middle east, and their potential use in pest control strategies. Journal of Pest Science, 86:635-647. | ||
آمار تعداد مشاهده مقاله: 764 تعداد دریافت فایل اصل مقاله: 546 |