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Abstract In this study, an effective collocation method based on cubic B-spline has been im-
plemented to get the numerical solutions for the non-linear Fisher’s equation. After
separating this scheme with this method, the stability of the method was proven. To

check the efficiency and accuracy of the proposed method, some numerical problems
have been considered. The numerical results are found in good agreement with the
exact solutions.
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1. Introduction

An always better understanding of nature is mixed with math problems. So, we
should look for a way to answer mathematical problems with the least possible errors.
In this case, partial differential equations (PDEs) are one of the most fundamental
issues that appear in many natural phenomena. Therefore, finding a way for solving
numerical partial differential equations with fewer errors, help us to understand nat-
ural phenomena. Fisher’s equation is one of the well-known equations appearing in
some natural phenomena and it is usually viewed as a population growth model.
Many numerical approaches have been used to solve this equation. Cattani & Ku-
dreyko [1] used the wavelet-Galerkin approach to find the numerical solution of
Fisher’s equation. Verma [15] used the Lie symmetry method for analytic and the
numerical study of the non-linear diffusion equations of Fisher’s types. Trigonometric
B-splines [18] have been used by Zahra. Dag and Ersoy [2] considered cubic B-spline
algorithm for solving Fisher equation. Wang and Jiao [17] used a fully discrete pseudo
spectral scheme for Fisher’s equation and generalized it with Hermite interpolation.
In this study, we have paid attention to the Fisher equation and introduce and apply
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a method for numerical solution. In section 2, we introduce the Fisher equation and
its application in other sciences, particularly in fluid mechanics and biology and in
the context of biological invasion and also the applications of this equation checked
out. In section 3, we bring some numerical methods for the Fisher equation and
prove stability of the method. In section 4, we have explained the effectiveness of the
method by using some numerical examples and analysis of the obtained errors.

2. Reaction-diffusion equation

Reaction-diffusion (RD) equations arise naturally in systems consisting of many
interacting components, (e.g., chemical reactions) and are widely used to describe
pattern-formation phenomena in a variety of biological, chemical, and physical sys-
tems. The principal ingredients of all these models are the equation of the form

∂tu = v∆2u+ ζ(u) (2.1)

where u = u(x, t) is a vector of concentration variables, ζ(u) describes a local re-
action kinetics and the Laplace operator ∆2 acts on the vector u componentwise.
v denotes a diagonal diffusion coefficient matrix. Note that we suppose the system
(2.1) is isotropic and uniform, so v is represented by a scalar matrix, independent on
coordinates.

Case A In this equation, if ζ(u) = u(1−u), we have Fisher’s equation which is written
as follow:

ut = vuxx + ku(1− u) (2.2)

This is a non-linear parabolic equation that first used by Fisher [4] to intro-
duce virile gene in an infinite long habitat. v is the diffusion coefficient, k is
a positive multiplication factor, t is time and x is distance. Fishers equation
is used for studying biological invasion in which way, we can study migration
and population habits of a variety of biological species. [11]

Case B If ζ(u) = u(1 − u)(u − β), we have switching waves, which are written as
follows

ut = vuxx + u(1− u)(u− β) (2.3)

that β is a number in (0, 1).

2.1. Physical interpretation of equations. The one-dimensional displacement re-
actions can be described by the following equation

ut + vux = 0. (2.4)

In this reaction, the diffusion process does not occur and u is a dependent variable and
v is the velocity of displacement of a fluid stream. For example, if an oil drop is placed
in a stream of water, the oil drop will be displaced without any spread. Its shape and
density do not change and the oil drop only moves with the speed of water [6] . Figure
1 describes this phenomenon. But in the reaction-diffusion process, the displacement
and diffusion occur simultaneously. For example, if a pollutant or a drop of ink is
added to the water, the concentration of the pollutants will be reduced (diffuse) as the
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Figure 1. displacement reactions

Figure 2. reaction-diffusion

current moves away from the source. The phenomenon of reaction-diffusion, without
source or by considering source as a natural reaction, is widely used in industry and
engineering sciences. The reaction-diffusion equation in one dimension is presented
as follows

ut + vux = ρuxx, (2.5)

where ρ is the diffusion coefficient. The Fishers equation is a reaction-diffusion equa-
tion. Figure 2 shows the reaction-diffusion process in a symbolic way.

2.2. Biological invasion. The term biological invasion is a common name for a
variety of phenomena related to the introduction and spread of alien or exotic species,
i.e., a species that has not been present in a given ecosystem before it is brought
in. Biological invasion usually has dramatic consequences for the native ecological
community. Invasion of alien species often results in virtual eradication of some
native species, and now it is considered as one of the main reasons for biodiversity
loss all over the world. Figure 3 can be a simple show for this phenomenon.
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Figure 3. Biological invasion in anutshel

Biological invasion is one of the most challenging and important issues in contempo-
rary ecology. It often causes considered the damage to agriculture or to aquaculture,
in the case of marine ecosystems and thus it may result in pivotal economic losses
as well. The impact of various biological and environmental factors, patterns, and
rates of species spread has been under intensive study for a few decades. New effective
tools and approaches have developed, important work has been done and considerable
progress has been made towards a better understanding of this phenomenon.

Although a lot of results in regarding biological invasion were obtained through
field studies and analysis of field observations, recent advances could hardly be possi-
ble without extensive use of mathematics, in particular, mathematical modeling. The
reason for this has its roots in the very nature of the problem. A regular study based
on manipulated field experiments is very difficult due to the virtual impossibility of
reproducing the environmental and initial conditions. Laboratory experiments are
often not effective due to the inconsistency of spatial scales. In these simulations,
mathematical modeling takes to some extent. The role is normally played by an ex-
perimental study in other natural sciences. It should also be mentioned that the issue
of biological invasion has been an inspiration, for example, some classical works by
Fisher (1937) and Kolmogorov et al. (1937), this subject has fascinated ever since
and eventually became one of the cornerstones for contemporary nonlinear science.
[10] Reaction-diffusion (RD) invasion models display more significant behavior when
population growth is not exponential but instead is regulated by density-dependent
mortality. RD invasion models produce traveling waves of invaders that spread out
from their place at a constant speed and form. Figure 4 shows this subject. Popula-
tions spread across a region that was not previously occupied.

Many ecological phenomena may be modelled using apparently partial differential
equations (PDEs) involving space and possibly time [5, 12]. Traveling waves are a
customary feature of many RD models. A common and classic RD model of ecological
import is the Fisher model [7] which is described by equation (2.2). Fishers equation
is also used in auto catalytic chemical reactions [3]. So it seems the progress in
understanding nature has always been tightly related to progress in mathematics.
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Figure 4. Instance of travelling waves

3. Numerical Approach

In this section, we use the collocation method with cubic B-spline to find an ap-
proximate solution Ũ(x, t) to the exact solution u(x, t) in the form

Ũ(x, t) =
N+1∑
i=−1

ci(t)Bi(x) (3.1)

where ci(t) are time-dependent quantities to be determined of boundary conditions
and collocation form of the differential equations and Bi(x) are the cubic B-spline
basis functions:

Bi(x) =
1

h3


(x− xi−2)

3 x ∈ [xi−2, xi−1)
(x− xi−2)

3 − 4(x− xi−1)
3 x ∈ [xi−1, xi)

(xi+2 − x)3 − 4(xi+1 − x)3 x ∈ [xi, xi+1)
(xi+2 − x)3 x ∈ [xi+1, xi+2)
0 otherwise

(3.2)

The values of Bi(x) and its derivatives in knot points are shown in Table 1
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Table 1. B-spline and its derivatives values
xi−2 xi−1 xi xi+1 xi+2

Bi(x) 0 1 4 1 0
B′

i(x) 0 − 3
h 0 3

h 0
B′′

i (x) 0 6
h2 − 12

h2
6
h2 0

3.1. B-Spline collocation method. According to the [11], we have these approxi-
mations:

u(xi, t) = Ũ(xi, t), 0 ≤ i ≤ N (3.3)

u′(xi, t) = Ũ ′(xi, t) +O(h4), 0 ≤ i ≤ N (3.4)

and

u′′(x0, t) =
14Ũ′′(x0,t)−5Ũ′′(x1,t)+4Ũ′′(x2,t)−Ũ′′(x3,t)

12
+O(h4) i = 0

u′′(xi, t) =
Ũ′′(xi−1,t)+10Ũ′′(xi,t)+Ũ′′(xi+1,t)

12
+O(h4) 1 ≤ i ≤ N

u′′(xN , t) =
14Ũ′′(xN ,t)−5Ũ′′(xN−1,t)+4Ũ′′(xN−2,t)−Ũ′′(xN−3,t)

12
+O(h4) i = N

(3.5)

by using (3.1) in (3.5) we get

u′′(x0, t) =
14

∑N+1
i=−1

ci(t)B
′′
i (x0)−5

∑N+1
i=−1

ci(t)Bi(x1)+4
∑N+1

i=−1
ci(t)Bi(x2)−

∑N+1
i=−1

ci(t)Bi(x3)

12
+O(h4) i = 0

u′′(xi, t) =

∑N+1
i=−1

ci(t)Bi(xi−1)+10
∑N+1

i=−1
ci(t)Bi(xi)+

∑N+1
i=−1

ci(t)Bi(xi+1)

12
+O(h4) 1 ≤ i ≤ N

u′′(xN , t) =
14

∑N+1
i=−1

ci(t)Bi(xN )−5
∑N+1

i=−1
ci(t)Bi(xN−1)+4

∑N+1
i=−1

ci(t)Bi(xN−2)−
∑N+1

i=−1
ci(t)Bi(xN−3)

12
+O(h4) i = N

(3.6)

Given that B-Spline functions for each node point xi only in i− 1 , i and i+ 1 have
value; According to table 1 and (3.6) we have:

u′′(x0, t) =
14c−1−33c0+28c1−14c2+6c3−c4

2h2

u′′(xi, t) =
ci−2+8ci−1−18ci+8cj+1+cj+2

2h2

u′′(xN , t) = 14cN+1−33cN+28cN−1−14cN−2+6cN−3−cN−4

2h2

(3.7)

After applying these approximations, discriminate equation (2.2) by Crank Nicolson
scheme:

un+1 − un

∆t
= v

un+1
xx − un

xx

2
+ k

(u(1− u))n + (u(1− u))n+1

2
(3.8)
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By separating time scales and using (3.1), we get:
for i = 0

(cn+1
−1 + cn+1

0 + cn+1
1 )(1− k∆t

2
+ k∆tun)− v∆t

4h2
(14cn+1

−1 − 33cn+1
0

+ 28cn+1
1 − 14cn+1

2 + 6cn+1
3 − cn+1

4 ) = (cn−1 + cn0 + cn1 )(1−
k∆t

2
)

+
v∆t

4h2
(14cn−1 − (33cn0 + 28cn1 − 14cn2 + 6cn3 − cn4 ), (3.9)

for 1 ≤ i ≤ N − 1

(cn+1
i−1 + cn+1

i + cn+1
i+1 )(1−

k∆t

2
+ k∆tun)− v∆t

4h2
(cn+1

i−2 + 8cn+1
i−1

− 18cn+1
i + 8cn+1

i+1 + cn+1
i+2 ) = (cni−1 + cni + cni+1)(1−

k∆t

2
)

+
v∆t

4h2
(cni−2 + 8cni−1 − 18cni + 8cni+1 + cni+2), (3.10)

for i = N

(cn+1
N−1 + cn+1

N + cn+1
N+1)(1−

k∆t

2
+ k∆tun)− v∆t

4h2
(14cn+1

N+1 − 33cn+1
N x (3.11)

+ 28cn+1
N−1 − 14cn+1

N−2 + 6cn+1
N−3 − cn+1

N−4) = (cnN−1 + cnN + cnN+1)

+
v∆t

4h2
(14cnN+1 − 33cnN + 28cnN−1 − 14cnN−2 + 6cnN−3 − cnN−4).

By sorting sentences in terms of ci ’s coefficients, respectively for i = 0 and 1 ≤ i ≤
N − 1 and i = N , we have:

m1c
n+1
−1 + m2c

n+1
0 + m3c

n+1
1 + m4c

n+1
2 + m5c

n+1
3 + m6c

n+1
4 = r1c

n
−1 + r2c

n
0 + r3c

n
1 + r4c

n
2 + r5c

n
3 + r6c

n
4

−z1c
n+1
i−2 + z2c

n+1
i−1 + z3c

n+1
i + z4c

n+1
i+1 − z1c

n+1
i+2 = z1c

n
i−2 + z5c

n
i−1 + z6c

n
i + z7c

n
i+1 + z1c

n
i+2

a1c
n+1
N−4

+ a2c
n+1
N−3

+ a3c
n+1
N−2

+ a4c
n+1
N−1

+ a5c
n+1
N

+ a6c
n+1
N+1

= b1c
n
−1 + b2c

n
0 + b3c

n
1 + b4c

n
2 + b5c

n
3 + b6c

n
4

(3.12)

By using these equations, we have the following system:

ACn+1 = BCn (3.13)

where

A =

 m1 m2 m3 m4 m5 m6

M
a1 a2 a3 a4 a5 a6


and

B =

 r1 r2 r3 r4 r5 r6
N

b1 b2 b3 b4 b5 b6


and

C =
[
c−1 c0 c1 c2 c3 · · · cN cN+1

]T
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that

M = penta− diagonal(−z1, z2, z3, z4,−z1)

and

N = penta− diagonal(z1, z5, z6, z7, z1).

But this is N + 1 equations with N + 3 unknowns, so we should replace the c−1

and cN+1 variables with proper phrases. For this, we can use the discretization of
Dirichlet or Neumanns boundary conditions. For example, we consider the following
Dirichlet boundary conditions:

u(x0, t) = g1(t) ⇒
N+1∑
i=−1

ci(t)Bi(x0) = g1(t)

c−1 + 4c0 + c1 = g1(t) ⇒ c−1 = g1(t)− 4c0 − c1 (3.14)

and

u(xN , t) = g2(t) ⇒
N+1∑
i=−1

ci(t)Bi(xN ) = g2(t)

cN−1 + 4cN + cN+1 = g2(t) ⇒ cN+1 = g2(t)− 4cN − cN−1. (3.15)

By using (3.14) and (3.15) in (3.12) system, we obtain a system of N + 1 equations
with N + 1 unknowns in the following form

ÃCn+1 = B̃Cn + b, (3.16)

where

Ã =



m2 − 4m1 m3 −m1 m4 m5 m6

z2 + 4z1 z3 + z1 z4 −z1
−z1 z2 z3 z4 −z1

. . .

−z1 z2 z3 z4 −z1
−z1 z2 z3 + z1 z4 + 4z1

a1 a2 a3 a4 − a6 a5 − 4a6


,

B̃ =



r2 − 4r1 r3 − r1 r4 r5 r6
z5 − 4z1 z6 − z1 z7 z1

z1 z5 z6 z7 z1
. . .

z1 z5 z6 z7 z1
z1 z5 z6 − z1 z7 − 4z1

b1 b2 b3 b4 − b6 b5 − 4b6


,
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b =



r1g1(tn)−m1g1(tn+1)
z1g1(tn) + x2g1(tn+1)

0
0
...
0
0

z1g2(tn) + x2g2(tn+1)
b6g2(tn)− a6g2(tn+1)


,

and

C =


c0
c1
...

cN−1

cN

 .

Now, we can solve this N + 1 in N + 1 system in each level. But we need the first
level C0, that obtain using B-spline approximation of the initial condition [8].

3.2. Stability of the scheme. Consider equation (3.10) using the approximations
(3.1) and the assumptions un = γ, 1− k∆t

2 + k∆tγ = ϕ1, 1 +
k∆t
2 = ϕ2, and

v∆t
h2 = λ.

We have

− λ

4
cn+1
i−2 + (ϕ1 − 2λ)cn+1

i−1 + (
9λ

2
+ 4ϕ1)c

n+1
i + (ϕ1 − 2λ)cn+1

i+1 − λ

4
cn+1
i+2 =

λ

4
cni−2 + (ϕ2 + 2λ)cni−1 + (4ϕ2 −

9λ

2
)cni + (ϕ2 + 2λ)cni+1 +

λ

4
cni+2. (3.17)

Assume cnj = Aδneijθh where i =
√
−1

− λ

4
Aδn+1ei(j−2)θh + (ϕ1 − 2λ)Aδn+1ei(j−1)θh + (

9λ

2
+ 4ϕ1)Aδn+1ei(j)θh+

(ϕ1 − 2λ)Aδn+1ei(j+1)θh − λ

4
Aδn+1ei(j+2)θh =

λ

4
Aδnei(j−2)θh+

(ϕ2 + 2λ)Aδnei(j−1)θh + (4ϕ2 −
9λ

2
)Aδnei(j)θh + (ϕ2 + 2λ)Aδnei(j+1)θh

+
λ

4
Aδnei(j+2)θh. (3.18)

After simplify common factors from the sides of the equation we have

δ(−λ

4
ei(−2)θh + (ϕ1 − 2λ)ei(−1)θh + (

9λ

2
+ 4ϕ1) + (ϕ1 − 2λ)eiθh − λ

4
ei(2)θh) =

λ

4
ei(−2)θh + (ϕ2 + 2λ)ei(−1)θh + (4ϕ2 −

9λ

2
) + (ϕ2 + 2λ)eiθh +

λ

4
ei(2)θh. (3.19)
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So

δ =
λ
4 e

i(−2)θh + (ϕ2 + 2λ)ei(−1)θh + (4ϕ2 − 9λ
2 ) + (ϕ2 + 2λ)eiθh + λ

4 e
i(2)θh

−λ
4 e

i(−2)θh + (ϕ1 − 2λ)ei(−1)θh + ( 9λ2 + 4ϕ1) + (ϕ1 − 2λ)eiθh − λ
4 e

i(2)θh

⇒ δ =
λ
2 cos2θh+ 2(ϕ2 + 2λ)cosθh+ (4ϕ2 − 9λ

2 )
λ
2 cos2θh+ 2(ϕ1 − 2λ)cosθh+ (4ϕ2 +

9λ
2 )

(3.20)

or δ = p
q .

For stability of the scheme, we should have |δ| < 1 so

|p
q
| < 1 ⇒

{ p
q < 1 ⇒ q − p > 0
p
q > −1 ⇒ q + p > 0

(3.21)

For

p+ q = 2(ϕ1 + ϕ2) + 4(ϕ1 + ϕ2)

M = ϕ1 + ϕ2 = 2 + k∆tγ > 0

⇒ p+ q = 2Mcosθh+ 4M

In the worst case cosθh = −1 and p+ q = 2M > 0.
For

q − p = −λcos2θh+ 9λ+ 4(ϕ1 − ϕ2) + cosθh(2ϕ1 − 8λ− 2ϕ2)

= −λ(2cos2θh− 1) + 2(ϕ1 − ϕ2 − 4λ)cosθh+ 9λ+ 4(ϕ1 − ϕ2)

= −2λcos2θh+ 2(−k∆t+ k∆tγ − 4λ)cosθh+ 10λ+ 4(−k∆t+ k∆tγ)

In the worst case cosθh = 1 and q − p = 6k∆t(γ − 1) > 0. So the scheme is
unconditionally stable.

4. Numerical results

Now, we demonstrate the effectiveness of this method by several numerical exam-
ples and for calculating error, we use norm 2 as below

L2 =

√√√√ N∑
0

|uj − Ũj |2. (4.1)

Example 1. We solve Fisher’s equation (2.2) with the following exact solutions
obtained by Wang [16] as:

u(x, t) =
1

(1 + e
√

k
6 x−

5k
6 t)

. (4.2)

In figure 5 (a), results are displayed for t = 0.001 to t = 0.003 and in figure 5 (b),
results are displayed for t = 1 to t = 5; in both case N = 120. According to figure 5
(a) and figure 5 (b) numerical results obtained from the method approximate exact
solution very well and characters are matching and the results are satisfactory.
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Figure 5. (a) Numerical solutions t = 0.001 to t = 0.003 (b) Nu-
merical solutions t = 1 to t = 5

(a)

(b)

Figure 6. Comparison of errors between cubic trigonometric B-
spline differential quadrature method (BDQM), Extended mod-
ified cubic B-spline method (EMCB) and B-spline collocation
method(BSCM) for the Example 1

In figure 6, the comparison of errors (according to norm 2 in (4.1)) between cubic
trigonometric B-spline differential quadrature method (BDQM) [14], extended mod-
ified cubic B-spline method(EMCB) [13] and B-spline collocation method (BSCM)
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Figure 7. (a) Numerical solutions t = 0 to t = 0.2 and ∆t = 0.05.
(b) Numerical solutions t = 0.5 to t = 5 and ∆t = 0.5

(a)

(b)

displayed. Based on the results in this chart, B-spline collocation method has less
error than the extended modified cubic B-spline method and B-spline differential
quadrature method.

Example 2. Consider Fisher’s equation (2.2) with v = 0.1, k = 1 with initial condi-
tion as bellow

u(x, 0) = sech2(10x) (4.3)

from [9].
Figure 8(a) shows the results from t = 0 to t = 0.2 and ∆t = 0.05 and figure 8(b)
shows the results from t = 0.5 to t = 5 and ∆t = 0.5. The results are a good
approximation for the exact solution and this shows the effectiveness of the B-spline
collocation method for this case.

Example 3. Consider Fisher’s equation (2.3) with v = 1 , β = 0.5, 1.5 , ∆t = 0.0001
, h = 0.02 and the following exact solution

u(x, t) =
1

2
+

1

2
β + (

1

2
− 1

2
β)tanh(1 +

1

4

√
2(−1 + β)(x− θt))

where θ = (1 + β)/
√
2

In Table 2 obtained results with β = 1.5 are shown and compared with [15]. Also,
in Figure 8 error diagram with β = 0.5 is drawn. The results show the high accuracy
of the method.
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Table 2. L2 for example 3 with β = 1.5, h = 0.02 and ∆t = 0.0001

t [15] peresent
0.02 7.054E-03 9.879E-08
0.5 6.210E-03 1.209E-07
1.0 3.335E-03 1.346E-07
3.0 3.767E-05 6.164E-08
5.0 3.760E-07 1.177E-07

Figure 8. Comparison of errors between symmetry reductions
method (SR) [15] and cubic B-spline collocation method (CB) for
Example 3 with β = 0.5

5. Conclusion

In this study, we use a numerical approach for solving the biological invasion in
Fisher’s equation. Fishers equation is usually viewed as a population growth model.
Biological invasion is one of the issues that can be described with partial differential
equations (PDEs). Fisher’s equation describes this phenomenon. So a collocation
method based on cubic B-spline functions (BSCM) has been used to solve the bio-
logical invasion in Fisher’s equation. This method was implemented for solving the
Fisher equation. The unconditional sustainability of this method was proved using
Von Neumann’s approach. The numerical results compared with some other studies
are acceptable and satisfactory. Also, the numerical results and the actual answer are
acceptable to a very reasonable level.
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