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presented to illustrate the efficiency of the obtained results.
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1. Introduction

Fractional differential equations play an important role in various fields of science
and engineering. With the help of fractional calculus, we can describe several nat-
ural phenomena and mathematical models more accurately. Therefore, recently the
factional differential equations have received much attention in theory and compu-
tations that is applications have been greatly developed [1, 7, 8, 9, 10, 11, 12, 21,
24, 25, 27, 30, 31, 32, 33, 38]. It is well-known that the initial and boundary value
problems for nonlinear fractional differential equations arise in the study of models of
control, porous media, electrochemistry, viscoelasticity, electromagnetic, etc. On the
other hand, boundary value problems with integral boundary conditions constitute a
very interesting and important class of problems. They have various applications in
applied fields such as blood flow problems, chemical engineering, theorem-elasticity,
underground water flow, population dynamics, and so forth. We refer the reader to
the papers [2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 26, 28, 34, 35, 36] and
the references therein.
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In this paper, we consider the following boundary value problem of nonlinear frac-
tional differential equations (FDE) with integral boundary conditions

CD
α
y(t) = f(t, y(t)), t ∈ (0, 1), α ∈ (2, 3], (1.1)

subject to

y(0)− β1y
′(0) =

∫ 1

0

g0(s)y(s)ds, (1.2)

y(1)− β2y
′(1) =

∫ 1

0

g1(s)y(s)ds, (1.3)

and

y′′(0) = 0, (1.4)

where f ∈ C ([0, 1]× R+,R+), g0, g1 ∈ C ([0, 1],R+) are positive and β1, β2 > 1 satisfy
1+β1 > β2. Here CD

α
represents the Caputo fractional operator of order α given by

CD
α
y(t) =

1

Γ(k − α)

∫ t

0

(t− x)k−α−1y(k)(x)dx, (1.5)

where k = ⌈α⌉ is the smallest integer greater than or equal to k. Notice that the
Caputo fractional derivative allows the utilization of initial and boundary conditions
involving integer order derivatives, which have clear physical interpretations.
The main aim of this paper is to give existence result for positive solutions to (1.1)-
(1.4). For this purpose, we are going to use of the Guo-Krasnoselskii’s fixed point
theorem presented in [22].
This paper is organized as follows: In Section 2, we introduce some necessary defi-
nitions and mathematical preliminaries of fractional calculus theories which are used
further to achieve our target. The existence result for positive solutions to (1.1)-(1.4)
is presented in Section 3. The section 4 consists numerical aspect of the manuscript.

2. Preliminaries

For sake of convenience to the readers, we firstly present the necessary definitions
and some necessary facts in the fractional calculus theory and functional analysis.
It should be noted that, within this study, X = C ([0, 1]) is the Banach space of
all continuous real valued functions on the interval [0, 1] endowed with the norm:
∥y∥ = max {|y(t)| : t ∈ [0, 1]}. Moreover, the nonempty convex closed subset P of X
is called a cone in X if ax ∈ P and x+ y ∈ P for all x, y ∈ P and a ≥ 0;x ∈ X and
−x ∈ X imply x = 0. It is easy to show that the set P = {y ∈ C[0, 1] : y(t) ≥ 0} is a
positive cone in C[0, 1].

Definition 2.1. [30, 31] Let y ∈ L1[a, b]. Then the Riemann–Liouville fractional
integral Iαa+y of order α > 0 is defined by

Iαa+y(t) =
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds, t > a.
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The Caputo fractional derivative of order α > 0 is defined as

CDα
a+y(t) = In−α

a+ y(n)(t), n = ⌈α⌉,

where ⌈α⌉ denotes the smallest integer greater than or equal to α.

For sake of simplicity, we will refer to CDα
a+ and Iαa+ as Dα and Iα, respectively.

Lemma 2.2. [27] If the fractional derivative Dαy(t) (α > 0) of a function y is
integrable, then

Iα (Dαy(t)) = y(t)−
[α]∑
j=0

y(j)(0)

j!
tj ,

where [α] denotes the integer part of α.

Definition 2.3. An equation of the form

y(t) = z(t) + λ

∫ b

a

ϕ(t, s)y(s)ds, (2.1)

is called a Fredholm integral equation of the second kind where z is a given function
on [a, b], y is an unknown function on [a, b] and λ is a parameter. In addition, the
kernel ϕ is a function on the square G = [a, b]× [a, b].

Theorem 2.4. [20] (Successive Substitution) Let z(t) be a continuous function
defined on the interval [a, b], and ϕ(t, s) be a continuous kernel defined on square
Q(a, b) and also bounded there by M . Let λ be a parameter. If |λ|M(b−a) < 1, then
the unique solution to the Fredholm integral equation (2.1) is given by

y(t) = z(t) + λ

∫ b

a

R(t, s;λ)z(s)ds,

where R(t, s;λ) is the resolvent kernel given by

R(t, s;λ) =

∞∑
m=1

λm−1ϕm(x, t).

Lemma 2.5. [37] Let X be a Banach space. If T be a bounded operator with ∥T∥ < 1
then I − T is invertible.

Theorem 2.6. [29] (Arzella-Ascoli Theorem) A subset of C[a, b] is compact if
and only if it is closed, bounded and equicontinuous.

Theorem 2.7. [22] (Krasnoselskii’s fixed point theorem). Let E be a Banach
space, and let C ⊂ E be a cone in E. Assume Ω1,Ω2 are open sets in E with
0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : C

∩
(Ω2 \ Ω1) −→ C be a completely continuous

operator such that either

(1) ∥Su∥ ≥ ∥u∥, u ∈ C ∩ ∂Ω1 and ∥Su∥ ≤ ∥u∥, u ∈ C ∩ ∂Ω2, or
(2) ∥Su∥ ≤ ∥u∥, u ∈ C ∩ ∂Ω1 and ∥Su∥ ≥ ∥u∥, u ∈ C ∩ ∂Ω2.

Then S has a fixed point in C
∩
(Ω2 \ Ω1).
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3. Main results

In this section, we discuss the existence of positive solutions to the nonlinear FDE
(1.1) subject to the integral boundary conditions (1.2)-(1.4). Prior to presenting the
main result, we discuss the following boundary value problem

CD
α
y(t) = p(t), t ∈ (0, 1), (3.1)

satisfying the integral boundary conditions

y(0)− β1y
′(0) =

∫ 1

0

g0(s)y(s)(s)ds, (3.2)

y(1)− β2y
′(1) =

∫ 1

0

g1(s)y(s)(s)ds, (3.3)

y′′(0) = 0, (3.4)

where p ∈ C [[0, 1],R] and β1, β2 ∈ R.

Lemma 3.1. If p ∈ C[[0, 1],R] and β1, β2 > 1 such that 1 + β1 > β2. Then the
equation (3.1) with the integral boundary conditions (3.2)-(3.4) is equivalent to the
following integral equation

y(t) =

∫ 1

0

G(t, s)p(s)ds− t+ β1 − 1

1 + β1 − β2

∫ 1

0

g0(s)y(s)ds

+
t+ β1

1 + β1 − β2

∫ 1

0

g1(s)y(s)ds, (3.5)

where G(t, s) is the Green’s function given by

G(t, s) =



(α−1)(β2t+β1β2)(1−s)α−2−(t+β1)(1−s)α−1

Γ(α)(1+β1−β2)
,

0 ≤ t ≤ s ≤ 1.

(1+β1−β2)(t−s)α−1+(α−1)(β2t+β1β2)(1−s)α−2−(t+β1)(1−s)α−1

(1+β1−β2)Γ(α)
,

0 ≤ s ≤ t ≤ 1.
(3.6)

Proof. Applying the operator Iα to both sides of (3.1) and using Lemma 2.2, we
obtain

y(t) =

∫ t

0

(t− s)α−1

Γ(α)
p(s)ds+ y(0) + y′(0)t+ y′′(0)

t2

2
.

Notice that since y′′(0) = 0 we deduce that

y(t) =

∫ t

0

(t− s)α−1

Γ(α)
p(s)ds+ y(0) + y′(0)t, (3.7)

and, therefore

y′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
p(s)ds+ y′(0). (3.8)
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Satisfying the integral boundary conditions (3.2) and (3.3), we obtain the following
linear system

y(0)− β1y
′(0) =

∫ 1

0

g0(s)y(s)ds, (3.9)

y(0) + (1− β2)y
′(0) =

∫ 1

0

g1(s)y(s)ds− C1 + β2C2, (3.10)

where C1 =

∫ 1

0

(1− s)α−1

Γ(α)
p(s)ds and C2 =

∫ 1

0

(1− s)α−2

Γ(α− 1)
p(s)ds are constants.

Therefore, as a result of solving the linear system (3.9)-(3.10), the values of y(0)
and y′(0) are given by

y(0) =
β1β2C2 − β1C1

1 + β1 − β2
+

1− β1

1 + β1 − β2

∫ 1

0

g0(s)y(s)ds

+
β1

1 + β1 − β2

∫ 1

0

g1(s)y(s)ds,

and

y′(0) =
β2C2 − C1

1 + β1 − β2
− 1

1 + β1 − β2

∫ 1

0

g0(s)y(s)ds

+
1

1 + β1 − β2

∫ 1

0

g1(s)y(s)ds.

Substitution of y(0) and y′(0) into Eq. (3.7) gives

y(t) =

∫ t

0

(t− s)α−1

Γ(α)
p(s)ds− (β1 + t)

β1 + 1− β2

∫ 1

0

(1− s)α−1

Γ(α)
p(s)ds

+
β2(t+ β1)

β1 + 1− β2

∫ 1

0

(1− s)α−2

Γ(α− 1)
p(s)ds

+
β1 + t

1 + β1 − β2

∫ 1

0

g1(s)y(s)ds−
t+ β1 − 1

1 + β1 − β2

∫ 1

0

g0(s)y(s)ds,

which can be written as

y(t) =∫ t

0

(t− s)α−1

Γ(α)
p(s)ds−

∫ t

0

(β1 + t)

β1 + 1− β2

(1− s)α−1

Γ(α)
p(s)ds

−
∫ 1

t

(β1 + t)

β1 + 1− β2

(1− s)α−1

Γ(α)
p(s)ds+

∫ t

0

β2(β1 + t)

β1 + 1− β2

(1− s)α−2

Γ(α− 1)
p(s)ds

+

∫ 1

t

β2(β1 + t)

β1 + 1− β2

(1− s)α−2

Γ(α− 1)
p(s)ds+

β1 + t

β1 + 1− β2

∫ 1

0

g1(s)y(s)ds

− t+ β1 − 1

1 + β1 − β2

∫ 1

0

g0(s)y(s)ds. (3.11)
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Finally, it can be easily verified that y(t) in (3.11) is equivalent to the one in Eq. (3.5).
This completes the proof. �

Remark 3.2. The Green’s function G(t, s) given in (3.6) is positive and continuous
for all (t, s) ∈ [0, 1]× [0, 1].

Proof. The continuity is plain. It is enough to show that G(t, s) > 0. Since, 1+β1 >
β2 > 1, α ∈ [2, 3) and 0 < s, t < 1 we have β2(α − 1) > 1. Hence β2(α − 1) > 1 − s
and β2(α− 1)(t+β1) > (t+β1)(1− s) or (α− 1)(β2t+β1β2) > (t+β1)(1− s). Then

(α− 1)(β2t+ β1β2)(1− s)α−2 − (t+ β1)(1− s)α−1 > 0. (3.12)

On other hand (1 + β1 − β2)(t− s)α−1 > 0 when 0 ≤ s ≤ t ≤ 1. Hence

(1 + β1 − β2)(t− s)α−1 + (α− 1)(β2t+ β1β2)(1− s)α−2

− (t+ β1)(1− s)α−1 > 0. (3.13)

Therefore, the result is concluded by (3.12) and (3.13). �

Lemma 3.3. Let β1, β2 > 1 such that 1 + β1 > β2. Then there exists a positive
continuous function γ : [0, 1] −→ R such that G(t, s) ≥ γ(t)G(s, s) for all t, s ∈
[0, 1]. Moreover, γ0 := min {γ(t) : t ∈ [0, 1]} > 0.

Proof. Define k1(t) and k2(t) as follows

k1(t) =
β2(t+ β1)

1 + β1 − β2
and k2(t) =

t+ β1

1 + β1 − β2
.

Let,

K := max {k1(t), k2(t) : t ∈ [0, 1]}

and

γ(t) =
1

K
min {k1(t), k2(t) : t ∈ [0, 1]} .

It is clear that

K =
β2(1 + β1)

1 + β1 − β2
, γ(t) =

t+ β1

β2(1 + β1)
and 0 < γ(t) < 1.

Moreover, for t ≤ s

γ(t)G(s, s) =

t+ β1

β2(1 + β1)

(α− 1)(β2s+ β1β2)(1− s)α−2 − (s+ β1)(1− s)α−1

Γ(α)(1 + β1 − β2)

=
t+ β1

β2(1 + β1)

β2(α− 1)(s+ β1)(1− s)α−2 − (s+ β1)(1− s)α−1

Γ(α)(1 + β1 − β2)

≤ s+ β1

β2(1 + β1)

(α− 1)(β2t+ β1β2)(1− s)α−2 − (t+ β1)(1− s)α−1

Γ(α)(1 + β1 − β2)

≤G(t, s)
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and similarly for s ≤ t we have

G(t, s) ≥ γ(t)
−(s+ β1)(1− s)α−1 + (α− 1)(β2s+ β1β2)(1− s)α−2

(1 + β1 − β2)Γ(α)

= γ(t)G(s, s).

Notice that, the continuous function γ(t) on the compact interval [0, 1] has a minimum
at some point t0 in [0, 1]. Hence γ0 = γ(t0) > 0. This completes the proof. �

Lemma 3.4. Let β1, β2 > 1 such that 1+β1 > β2. Suppose that g0, g1 are continuous
and positive functions such that an auxiliary function ϕ : [0, 1]× [0, 1] → R defined by

ϕ(t, s) =
(t+ β1)

1 + β1 − β2
g1(s) +

t+ β1 − 1

1 + β1 − β2
g0(s),

so that it satisfies

0 ≤ m := min{ϕ(t, s) : t, s ∈ [0, 1]}
≤ M := max{ϕ(t, s) : t, s ∈ [0, 1]} < 1.

If we define an operator A : C[0, 1] −→ C[0, 1] by

(Ay)(t) =

∫ 1

0

ϕ(t, s)y(s)ds. (3.14)

Then A is a bounded linear operator and A(P ) ⊂ P . Moreover, (I − A) is invertible

and ∥(I −A)−1∥ ≤ 1

1−M
.

Proof. It is clear that A is linear and |(Ay)(t)| ≤ M∥y∥. This shows that A is a
bounded linear operator. Let y ∈ P , then y(s) ≥ 0 for every s ∈ [0, 1]. Since,
ϕ(t, s) ≥ 0 it follows that (Ay)(t) ≥ 0 for every t ∈ [0, 1]. Hence A(P ) ⊂ P . Since
M < 1 we have ∥Ay∥ ≤ M∥y∥ < ∥y∥; i.e. ∥A∥ < 1. From Lemma 2.5, it may by
concluded that (I −A) is invertible.
Now we want to prove ∥(I −A)−1∥ ≤ 1

1−M . It is necessary to find the expression for

(I − A)−1. For this purpose, we use the theory of Fredholm integral equations. We
have y(t) = (I−A)−1z(t) if and only if y(t) = z(t)+(Ay)(t) for each t ∈ [0, 1]. Using
the operator (3.14) we get

y(t) = z(t) +

∫ 1

0

ϕ(t, s)y(s)ds. (3.15)

Since M < 1, then unique solution of Fredholm integral equation (3.15) is given by

y(t) = z(t) +

∫ 1

0

R(t, s)z(s)ds,

where the resolvent kernel R(t, s) given by

R(t, s) =

∞∑
m=1

ϕm(t, s). (3.16)
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Here, ϕ1(t, s) = ϕ(t, s) and ϕm is given by

ϕm(t, s) =

∫ 1

0

ϕ(t, τ)ϕm−1(τ, s)ds, m = 2, 3, · · · .

The series (3.16) is convergent because |ϕ(t, s)| ≤ M < 1. Thus, we have

R(t, s) ≤ M +M2 + . . . =
M

1−M
. (3.17)

Therefore, the expression of (I −A)−1 is given by

(I −A)−1z(t) = z(t) +

∫ 1

0

R(t, s)z(s)ds. (3.18)

Equation (3.18) yields that

|(I −A)−1z(t)| ≤|z(t)|+ M

1−M

∫ 1

0

z(s)ds

≤∥z∥
{
1 +

M

1−M

}
=

1

1−M
∥z∥.

This completes the proof of Lemma 3.4. �

Remark 3.5. Since ϕ(t, s) ≥ m for each (t, s) ∈ [0, 1] × [0, 1], we can easily show
that R(t, s) ≥ m

1−m .

In the following, we study the existence of positive solution (1.1) with boundary
conditions (1.2)-(1.4). For this purpose, we introduce some notations and basic as-
sumptions.
Consider the boundary value problem (1.1)-(1.4) and integral equation

y(t) =

∫ 1

0

G(t, s)f(s, y(s))ds− t+ β1 − 1

1 + β1 − β2

∫ 1

0

g0(s)y(s)ds

+
t+ β1

1 + β1 − β2

∫ 1

0

g1(s)y(s)ds

=

∫ 1

0

G(t, s)y(s)ds+

∫ 1

0

ϕ(t, s)y(s)ds. (3.19)

Define the nonlinear operator T : C[0, 1] −→ C[0, 1] by

Ty(t) =

∫ 1

0

G(t, s)f(s, y(s))ds. (3.20)

In view of (3.14) and by applying (3.20), equation (3.19) can be expressed by

y(t) = Ty(t) +Ay(t), t ∈ [0, 1]. (3.21)

According to Lemma 3.1, the fixed point of (T + A)y(t) coincide with the solutions
of boundary value problem (1.1)-(1.4).
Consider the cone P0 define by

P0 =

{
y ∈ P : min

t∈[0,1]
y(t) ≥ 1−M

1−m
γ0∥u∥

}
,
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where m and M are as in Lemma 3.4. From Lemma 3.1, we have y is a solution of
(3.21) if and only if it is a solution of

y(t) = (I −A)−1Ty(t), (3.22)

i.e. y is a fixed point of the operator S := (I −A)−1T .

We introduce following assumptions.
The nonlinear continuous function f : [0, 1]× [0,+∞) −→ [0,+∞) satisfies:

(A1) There exist L1 > 0 and u ∈ P with
∫ 1

0
G(t, s)u(s)ds ≤ 1 such that

f(t, y) ≤ yu(t)(1−M), ∀ y ∈ (0, L1], t ∈ [0, 1]. (3.23)

(A2) There exist L2 > L1 and v ∈ P with
∫ 1

0
G(s, s)v(s)ds ≥ 1−m

(1−M)γ0
such that

f(t, y) ≥ yv(t)(1−m)

γ0
, ∀ y ≥ L2, t ∈ [0, 1]. (3.24)

Now we show that the FDE (1.1) - (1.4) under the assumptions (A1) and (A2) has
positive solution.

Theorem 3.6. If β1, β2 > 1 such that 1+β1 > β2 and Remark 3.4 is satisfied. Then
FDE (1.1) - (1.4) under the assumptions (A1) and (A2) has positive solution.

Proof. Note that, the solution of (3.19), (3.21) and (3.22) are equivalent. It follows
from (3.18) that y is a solution of (3.22) if and only if

y(t) = (Ty)(t) +

∫ 1

0

R(t, s)(Ty)(s)ds,

or equivalently

y(t) =

∫ 1

0

G(t, s)f(s, y(s))ds+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, y(τ))dτds.

We want to show that the operator S, defined by

Sy(t) =

∫ 1

0

G(t, s)f(s, y(s))ds+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, y(τ))dτds (3.25)

satisfies Theorem 2.7 with considering E := C[0, 1] and C := P0 .
We continue the process in two stages as follows.
Step 1. We prove that, S : C −→ C is a completely continuous operator. For this
purpose we must prove that: (i) S is continuous and positive, (ii) S maps C into
itself, (iii) S is bounded, and (iv) S is equicontinuous.
Since, G(t, s) and f are continuous, hence S is continuous. If y ∈ P0, then Sy ≥
0, because in view of Remark 3.2 and Lemma 3.4, f, ϕ(t, s), R(t, s) and G(t, s) are
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positive. From 3.3 and 3.5, we have

(Sy)(t) ≥
∫ 1

0

γ0G(s, s)f(s, y(s))ds

+

∫ 1

0

R(t, s)

∫ 1

0

γ0G(s, τ)f(τ, y(τ))dτds

≥γ0

[
1 +

m

1−m

] ∫ 1

0

G(s, s)f(s, y(s))ds

=
γ0

1−m

∫ 1

0

G(s, s)f(s, y(s))ds. (3.26)

Moreover,

(Sy)(t) ≤
∫ 1

0

G(t, s)f(s, y(s))ds+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, y(τ))dτds

≤
∫ 1

0

G(t, s)f(s, y(s))ds+
M

1−M

∫ 1

0

ds

∫ 1

0

G(s, τ)f(τ, y(τ))dτ

≤
(
1 +

M

1−M

)∫ 1

0

G(t, s)f(s, y(s))ds

=
1

1−M

∫ 1

0

G(t, s)f(s, y(s))ds. (3.27)

This implies that

∥Sy∥ ≤ 1

1−M

∫ 1

0

G(t, s)f(s, y(s))ds. (3.28)

By combining (3.26) and (3.28) we obtain

(Sy)(t) ≥ γ0
1−m

≥ 1−M

1−m
γ0∥Sy∥.

This shows that Sy ∈ P0.
Let Λ ⊂ P0 be bounded, which is to say there exists a positive constant K > 0 such
that ∥y∥ ≤ K for all y ∈ Λ. Set

L = max {|f(t, y)|+ 1 : 0 ≤ t ≤ 1, 0 ≤ y ≤ K} .

Then for all y ∈ Λ, we have

|(Sy)(t)| =|(I −A)−1Ty(t)| ≤ 1

1−M

∫ 1

0

G(t, s)f(s, y(s))ds

≤ L

1−M

∫ 1

0

G(t, s)ds.
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That is, the set S(Λ) is bounded in P0. On the Other hand, we have

|(Ty)′(t)| =|
∫ t

0

(t− s)α−2

Γ(α− 1)
f(s, y(s))ds

− 1

β1 + 1− β2

∫ 1

0

(1− s)α−1

Γ(α)
f(s, y(s))ds

+
β2

β1 + 1− β1

∫ 1

0

(1− s)α−2

Γ(α− 1)
f(s, y(s))ds|

≤ L

Γ(α− 1)

∫ t

0

(t− s)α−2ds

+
L

(β1 + 1− β2)Γ(α)

∫ 1

0

(1− s)α−1ds

+
Lb

(β1 + 1− β2)Γ(α− 1)

∫ 1

0

(1− s)α−2

≤ L

Γ(α)
+

L

(β1 + 1− β2)Γ(α+ 1)
+

Lβ2

(β1 + 1− β2)Γ(α)
:= N.

Then, for each y ∈ Λ we have

|Sy(t1)− Sy(t2)| ≤
1

1−M
|Ty(t1)− Ty(t2)|

≤ 1

1−M

∫ t2

t1

|(Ty)′(s)|ds ≤ N(t2 − t1)

1−M
.

Hence, S(Λ) is equicontinuous. Therefore, by Arzela-Ascoli theorem, it is concluded

that S(Λ) is compact. Therefore, S : P0 −→ P0 is a completely continuous operator.

Step 2. We have to prove that there are Ω1 and Ω2 in E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2

and S : C
∩
(Ω2 \ Ω1) −→ C satisfying Theorem 2.7.

Let y ∈ P0 with ∥y∥ = L1. From (3.27) and (A1) we obtain

(Sy)(t) ≤ 1

1−M

∫ 1

0

G(s, s)f(s, y(s))ds

≤ 1

1−M

∫ 1

0

G(t, s)u(s)y(s)(1−M)ds

≤∥y∥
∫ 1

0

G(t, s)u(s)ds ≤ ∥y∥.

Thus, ∥Sy∥ ≤ ∥y∥. Let Ω1 := {y ∈ C[0, 1] : ∥y∥ < L1}. Then, we have ∥Sy∥ ≤ ∥y∥
for y ∈ P0

∩
∂Ω1 . Set

L̂2 = max

{
2L1,

1−m

1−M

L2

γ0

}
and Ω2 :=

{
y ∈ C[0, 1] : ∥y∥ < L̂2

}
.
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For a y ∈ P0 with ∥y∥ = L̂2 we have

min
t∈[0,1]

y(t) ≥ (1−M)γ0
1−m

∥y∥ ≥ (1−M)γ0
1−m

L̂2

≥ (1−M)γ0
1−m

1−m

(1−M)γ0
L2 ≥ L2.

From (3.26) and (A2) we get

(Sy)(t) ≥ γ0
1−m

∫ 1

0

G(s, s)f(s, y(s))ds

≥ γ0
1−m

∫ 1

0

G(s, s)
v(s)y(s)(1−m)

γ0
ds

≥
∫ 1

0

G(s, s)v(s)y(s)ds.

Since y ∈ P0, we have y(s) ≥ (1−M)γ0

1−m ∥y∥ for every s ∈ [0, 1]. Then, the above
inequality yields

(Sy)(t) ≥ (1−M)γ0
1−m

∫ 1

0

G(s, s)v(s)ds∥y∥.

Hence, ∥Sy∥ ≥ ∥y∥ for y ∈ P0

∩
∂Ω2. In view of Theorem 2.7 (2), the operator S

has a fixed point in P0

∩(
Ω2 \ Ω1

)
and hence this fixed point is a solution of (1.1)

with boundary conditions (1.2)-(1.4) which is positive. This completes the proof.
With L1 and L2 as in (A1) and (A2), we assume that f satisfies:

(A3) There exists δ ∈ P with
∫ 1

0
G(s, s)δ(s)ds ≥ 1−m

(1−M)γ0
such that

f(t, y) ≥ y(1−m)δ(t)

γ0
for all y ∈ (0, L1] and t ∈ [0, 1].

(A4) There exists σ ∈ P with ∥σ∥ ≤
(∫ 1

0
G(t, s)ds

)−1

such that

f(t, y) ≤ σ(t)y(1−M) for all y ≥ L2 and t ∈ [0, 1].

Now, under the assumptions (A3) and (A4), we show that the FDE (1.1)-(1.4) has
a positive solution. �

Theorem 3.7. If β1, β2 > 1 such that 1 + β1 > β2 and assume that Remark 3.4
is satisfied. Then (1.1) with the boundary conditions (1.2)-(1.4)under assumptions
(A3) and (A4) has at least one positive solution.

Proof. Since the existence of a solution for the FDE (1.1)-(1.4) is equivalent to the
existence of a fixed point for the operator S : P0 −→ P0, defined in (3.25), which is a
completely continuous operator. If y ∈ P0 with ∥y∥ = L1. Then, after making use of
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(A3), (3.26) gives

Sy(t) ≥ γ0
1−m

∫ 1

0

G(s, s)
δ(s)y(s)(1−m)

γ0
ds ≥

∫ 1

0

G(s, s)δ(s)y(s)ds

≥ (1−M)γ0
1−m

∫ 1

0

G(s, s)δ(s)ds∥y∥ ≥ ∥y∥.

Hence, ∥Sy∥ ≥ ∥y∥. Let Ω1 = {y ∈ C[0, 1] : ∥y∥ < L1}. Therefore, ∥Sy∥ ≥ ∥y∥ for
y ∈ P0

∩
∂Ω1. Since f is continuous and µf := max{f(t, y); t ∈ [0, 1], y ∈ [0, L2]} is

well defined. For L2 defined by

L2 = max

(
2L1,

µf

(1−M)∥σ∥

)
,

then for y ∈ P0 with ∥y∥ = L2, we have y(t) ≤ L2 for all t ∈ [0, 1] and f(t, y) ≤
max(µf , y(1−M)∥σ∥). Since µf ≤ (1−M)∥σ∥L2 it follows that

f(t, y) ≤ (1−M)∥σ∥L2 = (1−M)∥σ∥∥y∥.

The last inequality, together with (3.27) and assumption (A4) yields

(Sy)(t) ≤ 1

1−M

∫ 1

0

G(t, s)f(s, y(s))ds

≤ 1

1−M

∫ 1

0

G(t, s)(1−M)∥σ∥∥y∥ds

≤
(
∥σ∥

∫ 1

0

G(t, s)ds

)
∥y∥ ≤ ∥y∥.

Therefore ∥Sy∥ ≤ ∥y∥ for y ∈ P0 with ∥y∥ = L2. Let Ω2 = {y ∈ C[0, 1] : ∥y∥ < L2}.
Then we have ∥Sy∥ ≤ ∥y∥ for y ∈ P0

∩
∂Ω2. Therefore, case (1) of Theorem 2.7 is

satisfied. It follows that S has a fixed point in P0

∩(
Ω2 \ Ω1

)
and this fixed point is

a solution of (1.1) which is positive. This completes the proof. �

4. Example

In this section, we provide two examples to illustrate the application of our results.

Example 4.1. Consider the fractional differential equation

D
5
2 y(t) =

t

1 + t
y2(t), 0 < t < 1, (4.1)

satisfying the boundary conditions

y(0)− β1y
′(0) =

∫ 1

0

1

2
y(s)ds, (4.2)

y(1)− β2y
′(1) =

∫ 1

0

1

3
y(s)ds, (4.3)

and

y′′(0) = 0. (4.4)
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In this example, we have β1 = 3, β2 = 2 and g0(t) =
1
2 , g1(t) =

1
3 . Then β1+1−β2 =

2 and ϕ(t, s) = t+7
12 ,m = 7

12 ,M = 8
12 . Also, γ0 = 3

8 . The cone is given by

P0 :=

{
y ∈ P : min

t∈[0, 1]
y(t) ≥ 3

8
∥y∥

}
.

Now , let f0 = limy−→0+
f(t,y)

y and f∞ = limy−→∞
f(t,y)

y uniformly in t ∈ [0, 1] .

Obviously, f0 = 0. Then, there exists a constant L1 such that f(t, y) ≤ ϵ1y for all
0 ≤ y ≤ L1, where ϵ1 ≤ 1

12 . Then, (A1) is satisfied with u(t) = t+1
4 . On the other

hand, since f∞ = ∞, there exists a constant L2 > L1 > 0 such that f(t, y) ≥ ϵ2y for
all y ≥ L2, where ϵ2 ≥ 5

9 . Then, (A2) is satisfied with v(t) = t
1+t .

Example 4.2. Consider the fractional differential equation

D
5
2 y(t) = f(t, y(t)), 0 < t < 1, (4.5)

y(0)− β1y
′(0) =

∫ 1

0

1

3
y(s)ds, (4.6)

y(1)− β2y
′(1) =

∫ 1

0

1

3
y(s)ds, (4.7)

and

y′′(0) = 0. (4.8)

In this example, we have β1 = β2 = 2 and g0(t) = g1(t) =
1
3 . Then β1 +1−β2 = 1

and ϕ(t, s) = m = M = 1
3 . Also, γ0 = 1

3 and
∫ 1

0
G(s, s)ds = 0.6287. The cone is

defined by

P0 :=

{
y ∈ P : min

t∈[0,1]
y(t) ≥ 1

3
∥y∥

}
.

Now , let f0 = limy−→0+
f(t,y)

y and f∞ = limy−→∞
f(t,y)

y uniformly in t ∈ [0, 1] . Then,

(A3) is satisfied with δ(t) = 5, f0 ∈ [10, +∞) and (A4) is satisfied with σ(t) = 1
4

and f∞ ∈ [0, 1
6 ].

5. Conclusions

In this work, we consider a class of nonlinear fractional differential equation with
integral boundary conditions involving Caputo fractional derivative possessing a lower
terminal at 0 in order to study the existence of positive solutions. To obtain the results
of this article, the Guo-Krasnoselskii’s fixed point theorem have been implemented.
Although the present study provides some insights in the equations encountered in
the existence of solutions, this existence theorem may be explored for other classes of
fractional differential equations, like recent contributions in [16], which is a subject
for future study.
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