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Abstract This paper is concerned with the reflected forward-backward stochastic differential
equations with continuous monotone coefficients. Using the continuity approach,
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1. Introduction

In this paper, we study the existence of solutions for some reflected forward-
backward stochastic differential equations.

In the early 1990s, the theory of backward and forward-backward stochastic dif-
ferential equations (BSDEs and FBSDEs, for short, respectively) emerged as a major
tool in the fields of mathematical finance and stochastic optimizations. In [6], it is
shown that the value processes of the optimal stopping problem can be presented as
solutions of reflected BSDEs. Solutions of classic BSDEs, in finance, can be consid-
ered as the recursive utility of an investor, which means that the decision of investors
will be affected by his wealth.

The study of FBSDEs was started in the early 1990s. Since the discussion by
Antonelli [1, 2] about the existence of local solution for FBSDEs, quite a few authors
have contributed to the solvability of FBSDEs with a finite time horizon. Antonelli
[1, 2] also constructed a counterexample showing that for coupled FBSDEs, large time
duration might lead to non-solvability.
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Non-linear backward stochastic differential equations were first studied in [12], who
proved the existence and uniqueness of the adapted strong solution, under smooth
square integrability assumptions on the coefficient and the terminal condition, plus
that the coefficient h(t, ω, y, z) is (t, ω)-uniformly Lipschitz in (y, z). El Karoui et al.
introduced the notion of reflected BSDE (RBSDE in short) [6], with one continuous
lower barrier. Following this paper, Cvitanic and Karatzas [3], introduced the notion
of reflected BSDE with two continuous barriers. Among the BSDEs, El Karoui et al.
[6] introduced a special class of reflected BSDEs, which is a BSDE with a solution
that is forced to stay above a lower barrier. Later, Michael Kohlmann [8] studied
the relationships between adjoints of stochastic control problems with the derivative
of the value function, and the latter with the value function of a stopping problem.
These results were applied to the pricing of contingent claims.

Lepeltier and San Martin [9] relaxed the condition on the barriers, and then, uti-
lizing a penalization method, proved the existence of a result without any assumption
other than the square integrability one on the coefficients. Later, Lepeltier and Xu
studied the case when the barriers are right continuous and left limit (RCLL in short),
and proved the existence and uniqueness of a strong solution in both the Picard iter-
ation and penalization method. Peng and Xu [13] considered the most general case
when barriers are just L2-processes by using the penalization method and studied a
special penalized BSDE, which is penalized with two barriers at the same time. They
proved that the solutions of these equations converge to the solution of reflected
BSDE. Peng et al. [14] developed a parallel method of reflected BSDEs on option
pricing. This method is based on block allocation.

2. Statement of the problem

Let (Ω,F , P ) be a probability space and (Wt)0≤t≤T be a standard n-dimensional
Brownian motion defined on this space, whose natural filtration is Ft = σ{Ws, 0 ≤
s ≤ t}. We denote by P the σ-field of Ft-progressively measurable sets on [0, T ]×Ω.

The aim of this paper is to study the required conditions for the existence of
solutions to the following reflected forward-backward stochastic differential equation
(RFBSDE):

Xt = x+

∫ t

0

b(s,Xs, Ys)ds+

∫ t

0

σ(s,Xs, Ys)dWs + ηt,

Yt = g(XT ) +

∫ T

t

h(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs +KT −Kt,

Yt ≥ Lt,

∫ T

0

(Yt − Lt)dKt = 0. (2.1)

First, we present some notations. Let
(1) S2 be the set of continuous, real-valued and adapted processes {Xt}t∈[0,T ] such
that:

||X||2S2 := E[ sup
t∈[0,T ]

|Xt|2] < +∞.



482 Z. POURSEPAHI SAMIAN AND M. R. YAGHOUTI

(2) H2 be the set of P-measurable processes {Zt}t∈[0,T ] with values in Rn such that:

||Z||2H2 := E
[∫ T

0

|Zt|2dt
]
< +∞.

(3) S2
ci be the subset of S2 of increasing processes.

For simplification, we suppose that n = 1 and only discuss the one-dimensional RF-
BSDE. Also, in this section, we introduce some assumptions on the coefficients of the
RFBSDE (2.1).

Assumption I. b : [0, T ]×Ω×R2 → R, σ : [0, T ]×Ω×R2 → R, h : [0, T ]×Ω×R3 → R
are P-measurable, continuous processes for any choice of the spatial variables and for
each fixed (t, ω), b(t, ω, ., .), h(t, ω, ., ., .), σ(t, ω, ., .) are continuous functions. More-
over, we assume that for any s ∈ [0, T ], ω ∈ Ω, x, x′, y, y′, z ∈ R:
(a) b is increasing in y and h is increasing in x;
(b) there exists a constant M ≥ 0, such that

|b(s, x, y)| ≤ M(1 + |x|+ |y|),
|b(s, x, y)− b(s, x′, y′)| ≤ M(|x− x′|+ |y − y′|),
|σ(s, x, y)| ≤ M(1 + |x|+ |y|),
|σ(s, x, y)− σ(s, x′, y′)| ≤ M(|x− x′|+ |y − y′|)
|h(t, x, y, z)| ≤ M(1 + |y|+ |z|).

Assumption II. g : R × Ω → R is a given FT -measurable continuous bounded in-
creasing function satisfying g(XT ) ∈ L2(FT ) and L is a continuous obstacle which is
P-measurable, real valued, satisfying E[sup0≤t≤T (L

+
t )

2] < ∞ and LT ≤ g(XT ) a.s.

Assumption III. If we denote V ([0, T ],Rn) to be the set of all Rn-valued func-
tions of bounded variation, then η ∈ VF ([0, T ],Rn), the set of all {Ft}t≥0-adapted
processes η with paths in V ([0, T ],Rn).

Note that the coefficients b and σ of the RFSDE contain Y , which is the solution
variable of RBSDE. Therefore the reflected FSDE and reflected BSDE in (2.1) are
coupled together. The problem is that in what conditions there is at least one solution
for the reflected FBSDE (2.1).

3. The basic conclusion

To prove the main result, we require the following lemma on the approximation of
continuous functions by Lipschitz condition. This lemma was first used by Lepeltier
and San Martin [10] in the study of the existence of a solution for BSDEs.

Lemma 3.1. Let h : Rp → R be a continuous function with linear growth, that is,
there exists a constant M < ∞ such that ∀x ∈ Rp, |h(x)| ≤ M(1 + |x|). Then the
sequence of functions

hn(x) = inf
y∈Qp

{h(y) + n|x− y|}
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is well defined for n ≥ M and satisfies
(i) linear growth: ∀x ∈ Rp, |hn(x)| ≤ M(1 + |x|);
(ii) monotonicity in n: ∀x ∈ Rp, hn(x) ≤ hn+1(x);
(iii) Lipschitz condition: ∀x, y ∈ Rp, |hn(x)− hn(y)| ≤ n|x− y|;
(iv) strong convergence: if xn → x, then hn(xn) → h(x).

Lemma 3.2. [11] Under the Assumptions (I)-(III), the following Reflected FSDE

Xt = x+

∫ t

0

b(s,Xs, Ys)ds+

∫ t

0

σ(s,Xs, Ys)dWs + ηt,

has a unique strong solution.

Now, we give the main result of this paper.

Theorem 3.3. Under the Assumptions I, II and III, there exists at least one solution
(X,Y, Z,K, η) ∈ S2 ⊗ S2 ⊗H2 ⊗ S2

ci ⊗ S2
ci for equation (2.1).

Proof. To create a solution of (2.1), the main idea is the following replication:

Xn
t = x+

∫ t

0

b(s,Xn
s , Y

n
s )ds+

∫ t

0

σ(s,Xn
s , Y

n
s )dWs + ηnt ,

Y n
t = g(XT ) +

∫ T

t

h(s,Xn−1
s , Y n

s , Zn
s )ds−

∫ T

t

Zn
s dWs +Kn

T −Kn
t ,

Y n
t ≥ Lt,

∫ T

0

(Y n
t − Lt)dK

n
t = 0. (3.1)

We show that the limits of monotonic sequence (Xn, Y n, Zn) satisfies in equation
(2.1). First, we construct the beginning point. Consider the following standard
RBSDEs:

Y 0
t = g(XT )−

∫ T

t

M(1 + |Y 0
s |+ |Z0

s |)ds−
∫ T

t

Z0
sdWs +K0

T −K0
t ,

Y 0
t ≥ Lt,

∫ T

0

(Y 0
t − Lt)dK

0
t = 0, (3.2)

and

Ut = |g(XT )|+
∫ T

t

M(1 + |Us|+ |Vs|)ds−
∫ T

t

VsdWs +BT −Bt,

Ut ≥ Lt,

∫ T

0

(Ut − Lt)dBt = 0. (3.3)

Because both of the generators are Lipschitz continuous, (according to Theorem 5.2
in El Karoui et al. [6]), each equation has a unique strong solution in S2 ⊗ H2 ⊗
S2
ci, denoted by (Y 0, Z0,K0) and (U, V,B) respectively. Furthermore, we know that

|Y 0
t | ≤ Ut. From the comparison theorem between K0 and B (see for example [4]),

we understand that K0
t ≥ Bt and then Ito’s formula will result that there exists a

constant C1 (only depending on M , T , E|g(XT )|2), s.t.
||Y 0||S2 + ||Z0||H2 + ||K0||S2

ci
≤ C1, (resp. ||U ||S2 + ||V ||H2 + ||B||S2

ci
≤ C1).
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Next, we construct X0. Take the following reflected forward equation

X0
t = x+

∫ t

0

b(s,X0
s , Y

0
s )ds+

∫ t

0

σ(s,X0
s , Y

0
s )dWs + η0t , (3.4)

where Y 0 is the solution of (3.2).
Let {bk(s, x, y)}n≥0 be the sequence defined in Lemma (3.1), so we know (from

Lemma(3.2)) that the following RFSDE has a unique solution, i.e.,

X0,k
t = x+

∫ t

0

b(s,X0,k
s , Y 0

s )ds+

∫ t

0

σ(s,X0,k
s , Y 0

s )dWs + η0,kt . (3.5)

From the comparison theorem (for more information on the comparison theorem see
Ikida and Watanabe [5], Chapter IV) we know that X0,k

t ≤ X0,k+1
t ≤ St, η0,kt ≤

η0,k+1
t ≤ At, where S ∈ S2 and A ∈ S2

ci are the unique solutions of the following
RFSDE:

St = x+

∫ t

0

M(1 + |Ss|+ |Us|)ds+
∫ t

0

σ(s, Ss, Us)dWs +At. (3.6)

Thus, there exists two lower semi-continuous processes X0 and η0 s.t. ∀t ≤ T ,

P − a.s. X0,k
t −→ X0

t ≤ St, and ||X0,k −X0||H2 → 0,

η0,kt −→ η0t ≤ At, and ||η0,k − η0||S2
ci
→ 0.

Using the dominated convergence theorem and Lemma(3.1)-(iv) we get that

E
[∫ T

0

|bk(s,X0,k
s , Y 0

s )− b(s,X0
s , Y

0
s )|2ds

]
≤ CE

[∫ T

0

|X0,k
s −X0

s |2 +
∫ T

0

|bk(s,X0
s , Y

0
s )− b(s,X0

s , Y
0
s )|2ds

]
→ 0,

as k → +∞.

Again, since |σ(s,X0,k
s , Y 0

s ) − σ(s,X0
s , Y

0
s )| ≤ M |X0,k

s − X0
s |, then because of the

Burkholder-Davis-Gundy inequality we have, when k → ∞,

E
[
sup

0≤t≤T

∣∣∣∫ t

0

(σ(s,X0,k
s , Y 0

s )− σ(s,X0
s , Y

0
s ))dWs

∣∣∣2]
≤ CE

∫ T

0

|σ(s,X0,k
s , Y 0

s )− σ(s,X0
s , Y

0
s )|2ds → 0.

Now, by getting a limit in equation (3.5) and using the optional section theorem
we can check that equation (3.4) is established for X0, i.e. X0 is continuous. In
addition, through the dominated convergence theorem and Dini’s theorem, we have
E [sup0≤t≤T |X0,k

t −X0
t |2] → 0, as k → ∞.

Then, we construct (Xn, Y n, Zn). First, we want to construct (X1, Y 1, Z1). We
can construct Y 1 using X0. In fact, if we denote h1(s, w, y, z) = h(s,X0

s (w), y, z), then
we can observe that |h1(s, w, y, z)| ≤ M(1+ |y|+ |z|). Again, if we define h1(s, w, y, z)
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the approximating sequence in Lemma(3.1), then we have a triple (Y 1,k, Z1,k,K1,k)
satisfying the following equation

Y 1,k
t = g(XT ) +

∫ T

t

h1
k(s, ω, Y

1,k
s , Z1,k

s )ds−
∫ T

t

Z1,k
s dWs +K1,k

T −K1,k
t ,

Y 1,k
t ≥ Lt,

∫ T

0

(Y 1,k
t − Lt)dK

1,k
t = 0, (3.7)

and by using the comparison theorem we deduce

Y 0
t ≤ Y 1,k

t ≤ Y 1,k+1
t ≤ Ut, K0

t ≥ K1,k
t ≥ K1,k+1

t ≥ Bt.

Since
∫ T

0
(Y 1,k

t − Lt)dK
1,k
t = 0, thus we see from Ito’s formula that

E
[
|Y 1,k

t |2 +

∫ T

t

|Z1,k
s |2ds

]
= E

[
|g(XT )|2 + 2

∫ T

t

Y 1,k
s h1

k(s, ω, Y
1,k
s , Z1,k

s )ds+ 2

∫ T

t

LsdK
1,k
s

]
≤ E|g(XT )|2 + α2E

∫ T

t

|h1
k(s, ω, Y

1,k
s , Z1,k

s )|2ds+ 1

α2
E
∫ T

t

|Y 1,k
t |2ds

+ 2E
∫ T

t

LsdK
1,k
s

≤ C2

(
1 + E|g(XT )|2 + E

∫ T

t

|Y 1,k
s |2ds

)
+
1

3
E
∫ T

t

|Z1,k
s |2ds

+
1

β
E [ sup

t≤s≤T
(L+

s )
2] + βE [(K1,k

T −K1,k
t )2],

the last inequality has obtained by taking α = 1
3M , and C2 is a constant depending

only on M and T .
However, because

K1,k
T −K1,k

t = Y 1,k
t − g(XT )−

∫ T

t

h1
k(s, Y

1,k
s , Z1,k

s )ds+

∫ T

t

Z1,k
s dWs,

then

E[(K1,k
T −K1,k

t )2] ≤ C3[1 + Eg(XT )
2 + E(Y 1,k

t )2 + E
∫ T

t

(|Y 1,k
s |2 + |Z1,k

s |2)ds].

Selecting β suitably, we can obtain from Gronwall’s inequality that

E|Y 1,k
t |2 ≤ C, E

∫ T

0

|Z1,k
s |2ds ≤ C, E|K1,k

T |2 ≤ C.

Because the sequence
{
Y 1,k

}
k≥1

is increasing, we can mark the limit by Y 1. In
addition, by using Ito’s formula and Burkholder-Davis-Gundy inequality, we get thet
E{sup0≤t≤T |Y 1,k

t |2} ≤ C. Hence, Fatou’s lemma indicates that E{sup0≤t≤T |Y 1
t |2} ≤

C and from the dominated convergence theorem we see that

E
∫ T

0

|Y 1
t − Y 1,k

t |2dt → 0. (3.8)
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Using Ito’s formula to |Y 1,j
t − Y 1,k

t |2 and taking expectation, we have

E|Y 1,j
0 − Y 1,k

0 |2 + E
∫ T

0

|Z1,j
t − Z1,k

t |2dt

= 2E
∫ T

0

(Y 1,j
t − Y 1,k

t )[h1
j (t, ω, Y

1,j
t , Z1,j

t )− h1
k(t, ω, Y

1,k
t , Z1,k

t )]dt

+ 2E
∫ T

0

(Y 1,j
t − Y 1,k

t )dK1,j
t + 2E

∫ T

0

(Y 1,k
t − Y 1,j

t )dK1,k
t

≤ 2E
∫ T

0

(Y 1,j
t − Y 1,k

t )[h1
j (t, ω, Y

1,j
t , Z1,j

t )− h1
k(t, ω, Y

1,k
t , Z1,k

t )]dt

+ 2E
∫ T

0

(Y 1,j
t − Lt)dK

1,j
t + 2E

∫ T

0

(Y 1,k
t − Lt)dK

1,k
t

≤ 2
(
E
∫ T

0

|Y 1,j
t − Y 1,k

t |2dt
)1/2

.
(
E
∫ T

0

|h1
j (t, ω, Y

1,j
t , Z1,j

t )− h1
k(t, ω, Y

1,k
t , Z1,k

t )|2dt
)1/2

≤ C
(
E
∫ T

0

|Y 1,j
t − Y 1,k

t |2dt
)1/2

.

Therefore {Z1,k
t }k≥1 is a Cauchy sequence in H2 and we know that

E
∫ T

0

(|Y 1,j
t − Y 1,k

t |2 + |Z1,j
t − Z1,k

t |2)dt → 0, as j, k → ∞,

and we can conclude from Ito’s formula that

|Y 1,j
t − Y 1,k

t |2 +

∫ T

t

|Z1,j
s − Z1,k

s |2ds

= 2

∫ T

t

(Y 1,j
s − Y 1,k

s )[h1
j (s, ω, Y

1,j
s , Z1,j

s )− h1
k(s, ω, Y

1,k
s , Z1,k

s )]ds

+ 2

∫ T

t

(Y 1,j
s − Y 1,k

s )(dK1,j
s − dK1,k

s )

− 2

∫ T

t

(Y 1,j
s − Y 1,k

s )(Z1,j
s − Z1,k

s )dWs.

Just as we have already demonstrated, ∀j ≥ k,
∫ T

t
(Y 1,j

s − Y 1,k
s )(dK1,j

s − dK1,k
s ) ≤ 0,

then

|Y 1,j
t − Y 1,k

t |2 ≤ 2

∫ T

t

(Y 1,j
s − Y 1,k

s )[h1
j (s, ω, Y

1,j
s , Z1,j

s )− h1
k(s, ω, Y

1,k
s , Z1,k

s )]ds

− 2

∫ T

t

(Y 1,j
s − Y 1,k

s )(Z1,j
s − Z1,k

s )dWs.
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Thus, we conclude that

E( sup
0≤t≤T

|Y 1,j
t − Y 1,k

t |2) ≤ 2
(
E
∫ T

0

|Y 1,j
t − Y 1,k

t |2dt
)1/2

.
(
E
∫ T

0

|h1
j (s, ω, Y

1,j
s , Z1,j

s )− h1
k(s, ω, Y

1,k
s , Z1,k

s )|2dt
) 1

2

+ 2E
(

sup
0≤t≤T

∣∣∣∫ T

0

(Y 1,j
s − Y 1,k

s )(Z1,j
s − Z1,k

s )dWs

∣∣∣)
≤ C

(
E
∫ T

0

|Y 1,j
t − Y 1,k

t |2dt
)1/2

+ 2C ′E
[
sup

0≤t≤T
|Y 1,j

t − Y 1,k
t |

(∫ T

0

|Z1,j
s − Z1,k

s |2ds
) 1

2
]

≤ C
(
E
∫ T

0

|Y 1,j
t − Y 1,k

t |2dt
)1/2

+
1

2
E( sup

0≤t≤T
|Y 1,j

t − Y 1,k
t |2)

+ C ′E
∫ T

0

|Z1,j
s − Z1,k

s |2ds.

Then,

E( sup
0≤t≤T

|Y 1,j
t − Y 1,k

t |2) → 0, E( sup
0≤t≤T

|K1,j
t −K1,k

t |2) → 0, as j, k → ∞. (3.9)

Therefore, there exists a progressively measurable process K1 such that

E( sup
0≤t≤T

|K1,j
t −K1

t |2) → 0, as j → ∞.

Therefore, the process {K1
t , 0 ≤ t ≤ T} is increasing and continuous with K1

0 = 0.
Then again, we have deduced that K1,k

T → K1
T in the sense that E[sup0≤t≤T |K1,k

t −
K1

t |2] → 0, as k → ∞. Let K1,0
t = K0

t , 0 ≤ t ≤ T , and the associated Radon measure
on [0, T ] noted by µ0. Next, define K̃1,k by

K̃1,k
t =


0, t < 0,

K1,k
t , 0 ≤ t ≤ T,

K1,k
T , t > T,

and µ1
k (resp. µ1) the density function of K̃1,k (resp. K̃1) such that

µ1
k([0, T ]) = K1,k

T , (resp. µ1([0, T ]) = K1
T ).

For almost all ω, we have

K1,k
T → K1

T ⇔ µ1
k([0, T ]) −→ µ1([0, T ]).

From the assumption of K1,k we realize that µ1
k is bounded and supk µ

1
k([0, T ]) ≤

µ0([0, T ]). Then there exists a subsequence, still denoted by {µ1
k}, such that µ1

k → µ1

in the weak sense, i.e.,

∀h ∈ Cb(R), µ1
k(h) → µ1(h).



488 Z. POURSEPAHI SAMIAN AND M. R. YAGHOUTI

Suppose that h̃ ∈ Cb(R) and h̃ = Y 1
t − Lt on [0, T ], then∫ T

0

(Y 1
t − Lt)dK

1,k
t =

∫
R
h̃(t)dµ1

k(t) →
∫
R
h̃(t)dµ1(t) =

∫ T

0

(Y 1
t − Lt)dK

1
t .

Eventually,

0 ≤
∫ T

0

(Y 1
t − Lt)dK

1
t

=

∫ T

0

(Y 1
t − Lt)d(K

1
t −K1,k

t ) +

∫ T

0

(Y 1
t − Y 1,k

t )dK1,k
t +

∫ T

0

(Y 1,k
t − Lt)dK

1,k
t

=

∫ T

0

(Y 1
t − Lt)d(K

1
t −K1,k

t ) +

∫ T

0

(Y 1
t − Y 1,k

t )dK1,k
t .

Because |
∫ T

0
(Y 1

t − Y 1,k
t )dK1,k

t | ≤ supt |Y 1
t − Y 1,k

t | . K1,k
T → 0, so the right hand side

of the above inequality vanishes, i.e.∫ T

0

(Y 1
t − Lt)dK

1
t = 0.

Thus we see that the following equation holds for the triple {(Y 1
t , Z

1
t ,K

1
t ), 0 ≤ t ≤ T}:

Y 1
t = g(XT ) +

∫ T

t

h1(s, ω, Y 1
s , Z

1
s )ds−

∫ T

t

Z1
sdWs +K1

T −K1
t ,

Y 1
t ≥ Lt,

∫ T

0

(Y 1
t − Lt)dK

1
t = 0. (3.10)

Next, similar to the way that we use on X0, we can form X1 based on Y 1. In addition,
since b and σ are monotonic on y and Y 0 ≤ Y 1, we conclude from the comparison on
SDEs that X0 ≤ X1.

Now, we can obtain the existence of a sequence (Xn, Y n, Zn,Kn, ηn) which is a
solution of (3.1) and P-a.s. for any t ≤ T ,

Xn
t ≤ Xn+1

t ≤ St, Y n
t ≤ Y n+1

t ≤ Ut, Kn
t ≥ Kn+1

t ≥ Bt, ηnt ≤ ηn+1
t ≤ At,

Note that in the above iterations, we set hn(s, ω, y, z) = h(s,Xn−1
s (ω), y, z).

Now, we study the convergence of (Xn, Y n, Zn,Kn, ηn). Clearly, there exist two
lower semi-continuous processes (Xt)t≤T , (Yt)t≤T and two continuous increasing pro-
cesses (Kt)t≤T , (ηt)t≤T such that

Xt = lim
n→∞

Xn
t , Yt = lim

n→∞
Y n
t , Kt = lim

n→∞
Kn

t , ηt = lim
n→∞

ηnt .

Thus, we can easily get that

Xt = x+

∫ t

0

b(s,Xs, Ys)ds+

∫ t

0

σ(s,Xs, Ys)dWs + ηt. (3.11)

We use the following formula to complete the proof

Y n
t = g(XT ) +

∫ T

t

h(s,Xn−1
s , Y n

s , Zn
s )ds−

∫ T

t

Zn
s dWs +Kn

T −Kn
t ,

Y n
t ≥ Lt,

∫ T

0

(Y n
t − Lt)dK

n
t = 0. (3.12)
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Again, we apply the Ito formula and conclude the following (for n ≥ m):

(Y n
t − Y m

t )2 +

∫ T

t

|Zn
t − Zm

t |2ds = 2

∫ T

t

(Y n
s − Y m

s )[h(s,Xn−1
s , Y n

s , Zn
s )

− h(s,Xm−1
s , Y m

s , Zm
s )]ds

+ 2

∫ T

t

(Y n
s − Y m

s )d(Kn
s −Km

s )

− 2

∫ T

t

(Y n
s − Y m

s )(Zn
s − Zm

s )dWs, (3.13)

where∫ T

t

(Y n
s − Y m

s )d(Kn
s −Km

s ) =

∫ T

t

(Y n
s − Y m

s )dKn
s +

∫ T

t

(Y m
s − Y n

s )dKm
s

≤
∫ T

t

(Y n
s − Ls)dK

n
s +

∫ T

t

(Y m
s − Ls)dK

m
s

= 0,

so,

E(Y n
0 − Y m

0 )2 + E
∫ T

0

|Zn
t − Zm

t |2ds

≤ 2E
∫ T

0

(Y n
s − Y m

s )[h(s,Xn−1
s , Y n

s , Zn
s )− h(s,Xm−1

s , Y m
s , Zm

s )]ds

≤ C1

[
E
∫ T

0

(Y n
s − Y m

s )2ds
] 1

2

[
E
∫ T

0

(h(s,Xn−1
s (ω), Y n

s , Zn
s )− h(s,Xm−1

s (ω), Y m
s , Zm

s ))2ds
] 1

2

As {Xn}, {Y n} are bounded by the processes S and U respectively, and ||U ||S2 +

||S||S2 ≤ C1, then E
∫ T

0
(h(s,Xn−1

s (ω), y, z)−h(s,Xm−1
s (ω), y, z))2ds is bounded, too.

Thus

E
∫ T

0

|Zn
t − Zm

t |2ds ≤ C2

[
E
∫ T

0

(Y n
s − Y m

s )2ds
] 1

2−→ 0,

i.e. the sequence {Zn} is Cauchy with Zt = limn→∞ Zn
t . We can demonstrate the

following using (3.13) and Burkholder-Davis-Gundy inequality
E( sup

0≤t≤T
|Y n

t − Y m
t |2) → 0.

Now, using (3.12) we have
E( sup

0≤t≤T
|Kn

t −Km
t |2) → 0∫ T

0

(Y n
t − Lt)dK

n
t −→

∫ T

0

(Yt − Lt)dKt, (3.14)

therefore ∫ T

0

(Yt − Lt)dKt = 0.
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Thus, we derive that (X,Y, Z,K, η) is a solution of (2.1). This result will finish the
proof. ■

4. Examples

In this section, some examples are provided to show the effectiveness of the pro-
posed Theorem (3.3).

Example 4.1. As mentioned previously, RFBSDEs have applications in financial
marketing. Now consider the following example, which is called optimal stopping
problem (American option). In an American call option, the wealth process Yt holds
in the following RBSDE,

Xt = X0 +

∫ t

0

µXsds+

∫ t

0

σXsdWs, 0 ≤ t ≤ 1,

Yt = (XT −K)+ −
∫ T

t

[rYs + (µ− r)Zs]ds−
∫ T

t

σZsdWs,

and Yt ≥ (Xt −K)+, 0 ≤ t ≤ inf{t, Yt − (Xt −K)+}. Here σ is the volatility rate, r
is uniformly bounded and K is a constant.

The RBSDE apply to American put option in the following case:

YT = ξ = (K −XT )
+.

For option pricing with differential interest rates, (µ − r) is related to Yt and Zt in
this Equation.

We assume that X = {Xt, 0 ≤ t ≤ T} is the risk asset and r is constant. Under
some assumptions, the equation is given through a reflected BSDE, together with the
forward equation of X. According to the Theorem (3.3), this equation has a solution,
i.e. Y0, which is the option value. ■

Example 4.2. Consider the following reflected forward-backward stochastic differen-
tial equation:

dX = X(1+X2)
(2+X2)3 dt+

1+X2

2+X2

√
1+2Y 2

1+Y 2+exp(− 2X2

t+1 )
dW (t) + exp(t),

dY = −g(t,X, Y )dt− f(t,X, Y )Zdt+ ZdW (t) + t,

X(0) = x, Y (T ) = exp(−X2(T )
T+1 ).

where g(t, x, u) = 1
1+t exp(−

x2

t+1 )
[
4x2(1+x2)
(2+x2)3 +

(
1+x2

2+x2

)2(
1− 2x2

t+1

)
− x2

t+1

]
and f(t, x, u) =

x
(2+x2)2

√
1+u2+exp(− 2x2

t+1 )

1+2u2 . As one can easily see, all of the requirements in the As-
sumptions I-III are satisfied. Thus, according to Theorem (3.3), this RFBSDE has a
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solution. ■

Remark 4.3. As we stated in the assumptions, h has sub-linear growth independent
of x. If we assume that

|h(t, x, y, z)| ≤ M(1 + |x|+ |y|+ |z|), ∀s ∈ [0, T ], x, y, z ∈ R

then b must have a sub-linear growth independent of y, i.e.

|b(s, x, y)| ≤ M(1 + |x|).

Remark 4.4. Stochastic integrals in applications are often taken in the sense of
Stratanovich calculus. This calculus is designed in such a way that its basic rules,
such as the chain rule and integration by parts are the same as in the standard calculus
(e.g. Rogers and Williams [15]) and integrals in the Stratonovich definition are easier
to manipulate. In general, the Ito integral is the usual choice in applied mathematics
while the Stratonovich integral is frequently used in physics.
Suppose that X(t) satisfies the following SDE in the Stratanovich sense

dX(t) = µ(X(t))dt+ σ(X(t))∂W (t),

with σ(x) twice continuously differentiable. Then X(t) satisfies the Ito SDE

dX(t) =
(
µ(X(t)) +

1

2
σ′(X(t))σ(X(t))

)
dt+ σ(X(t))dW (t).

Thus the infinitesimal drift coefficient in Ito diffusion is µ(x) + 1
2σ

′(x)σ(x) and the
diffusion coefficient is the same σ(x) (see [7] for details).

5. Conclusion

In this paper, we used Ito’s formula to prove the main theorem. But according to
the above statements, if we add the twice continuously differentiability condition of
σ to the assumptions, a proof using Stratanovich calculus could be also provided.
Also, the proof is true if the Brownian motion W (t) is replaced with any Ito process.

Future works

Due to the randomness of Brownian motion, the existence of a unique solution
for stochastic differential equations is not discussed. In these types of equations,
the existence of a unique weak solution or a unique strong solution is studied. Fu-
ture research can be dedicated to reviewing the conditions and requirements under
which the existence of a unique strong solution to the equation (2.1) can be ensured.
Also, the application of RFBSDEs in other disciplines such as physics and financial
mathematics could be studied in the future researches.
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