| تعداد نشریات | 45 |
| تعداد شمارهها | 1,422 |
| تعداد مقالات | 17,546 |
| تعداد مشاهده مقاله | 56,752,236 |
| تعداد دریافت فایل اصل مقاله | 18,816,932 |
A pseudo-spectral based method for time-fractional advection-diffusion equation | ||
| Computational Methods for Differential Equations | ||
| مقاله 4، دوره 8، شماره 3، آبان 2020، صفحه 454-467 اصل مقاله (158.85 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/cmde.2020.29307.1414 | ||
| نویسندگان | ||
| Ali Shokri* ؛ Soheila Mirzaei | ||
| Department of Mathematics, Faculty of Sciences, University of Zanjan, Zanjan, Iran. | ||
| چکیده | ||
| In this paper, a pseudo-spectral method with the Lagrange polynomial basis is proposed to solve the time-fractional advection-diffusion equation. A semi-discrete approximation scheme is used for conversion of this equation to a system of ordinary fractional differential equations. Also, to protect the high accuracy of the spectral approximation, the Mittag-Leffler function is used for the integration along the time variable. Some examples are performed to illustrate the accuracy and efficiency of the proposed method. | ||
| کلیدواژهها | ||
| Time-fractional advection-diffusion equations؛ Mittag-Leffler functions؛ Fractional derivative؛ Pseudo-spectral method | ||
|
آمار تعداد مشاهده مقاله: 575 تعداد دریافت فایل اصل مقاله: 748 |
||