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Abstract This manuscript is devoted to present an efficient numerical method for finding
numerical solution of Volterra-Fredholm integro-differential equations of fractional-
order. This technique is based on applying Müntz-Legendre polynomials and Petrov-
Galerkin method. A new Riemann-Liouville operational matrix for Müntz-Legendre
polynomials is proposed using Laplace transform. Employing this operational ma-
trix and Petrov-Galerkin method, transforms the problem into a system of algebraic
equations. Next, we solve this system by applying any iterative method. An estima-
tion of the error is proposed. Moreover, some numerical examples are implemented
in order to show the validity and accuracy of the suggested method.
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1. Introduction

The origin of fractional calculus is in the question whether the meaning of a in-
teger order derivative can be valid for an inappropriate order derivative. Regard to
letter of L’Hopital to Libeniz on 30 September 1695, this question was raised. In
response to this question, Leibniz said that it’s an apparent paradox that one day,
the consequences will be beneficial [13].

Recently, fractional calculus is a concern for many researchers and mathematicians,
since the fractional equations emerge in the modeling of many phenomena in physics,
chemistry, engineering, and so on. Fractional order integro-differential equation is a
type of fractional equations which has various applications in various sciences such
as earthquake engineering, biomedical engineering, fluid mechanics, thermal systems,
turbulence, fluid flow, mechanics, etc [2, 3, 10].
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Moreover, due to the importance of these equations, several analytical and numeri-
cal methods are presented to solve this class of fractional equations, such as collocation
method [4], CAS wavelet [17], Chebyshev wavelet [21], Bernoulli wavelets [7], hybrid
functions [9], method based on the block backward differential formula [6] and so on.

On the other hand, a set of basic functions is the Mütz-Legendre polynomials,
which is a set of generalized orthogonal polynomials. Badalyan introduced Mütz-
Legendre polynomials in 1955 [1]. Also, scholars like McCarthy et. al (1993) [12],
Stefánsson (2010) [19] have been studying this kind of polynomials. Recently, these
polynomials have been used as the basis polynomials for numerical solution of vari-
ous types of fractional problems. Here are some these research papers: Solving de-
lay Fredholm integro-differential equations by Müntz-Legendre matrix method [20],
Müntz-Legendre polynomials and numerical solution of gas solution in a fluid [5],
Müntz-Legendre wavelet for finding numerical solution of the fractional pantograph
differential equations [15], etc.

Employing the operational matrices of derivative or integral of orthogonal func-
tions, transforms the dynamical system problems into a solution for a system of
algebraic equations. This is the main advantage of using their. These operational
matrices can be derive based on the specific orthogonal functions, uniquely [9].

Due to the presence of λk factor, Müntz-Legendre polynomials have the advantages
of fractional functions in addition to the advantages of the orthogonal functions. The
existence of parameter λk makes these functions suitable for solving the fractional
equations. We employ these polynomials together Petrov-Galerkin method for solving
one kind of fractional equations.

The structure of this study is as follows. Section 2 recalls some basic definitions
which are needed for this manuscript. In Section 3, we derive Müntz-Legendre poly-
nomials operational matrix of Riemann-Liouville integration using Laplace transform.
In Section 4, we present our numerical method and an estimation of the error is given.
Finally, in Section 5 the achieved validity and efficiency numerical results are verified
by various examples.

2. Preliminaries

Definition 2.1. Assume that g : [a, b] → R, ν ∈ R, ν > 0 and n = ⌈ν⌉, the
Riemann-Liouville integral is defined as [16]

Iνg(x) =

{ 1
Γ(ν)x

ν−1 ∗ g(x), ν > 0,

g(x), ν = 0,
(2.1)

in which ∗ denotes the convolution product. For this fractional integral, we have

(IνDνg)(x) = g(x)−
⌈ν⌉−1∑
i=0

xi

i!
g(i)(0), (2.2)

where Dν is Caputo’s derivative, which is defined in Ref. [16].
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Definition 2.2. [16] Assume that Dkγg(x) ∈ C(0, 1] for k = 0, 1, . . . , n. Then, we
have:

g(x) =

n−1∑
k=0

xkγ

Γ(kγ + 1)
Dkγg(0+) +

xnγ

Γ(nγ + 1)
Dnγg(ξ),

with 0 < ξ ≤ x, ∀x ∈ (0, 1]. In addition, one has:

|g(x)−
n−1∑
k=0

xkγ

Γ(kγ + 1)
Dkγg(0+)| ≤ Mγ

xnγ

Γ(nγ + 1)
, (2.3)

in which Mγ ≥ supξ∈(0, 1] |Dnγg(ξ)|.

2.1. Müntz-Legendre polynomials. The Müntz-Legendre polynomials are orthog-
onal with the weight function ω(x) = 1 on the interval (0, 1] which are defined in [12]
as follows:

Pn(x) := Pn(x, Λn) =

n∑
k=0

cn,kx
λk , cn,k =

∏n−1
j=0 (λk − λj + 1)∏
j=0, j ̸=k(λk − λj)

, (2.4)

The following orthogonality condition is satisfied for the polynomials

⟨Pn, Pm⟩ =
∫ 1

0

Pn(x)Pm(x)dx =
δnm

2λn + 1
, (n ≥ m). (2.5)

In this study, we suppose that λk = kγ, γ > 0.

2.2. Function approximation. Suppose that H = L2[0, 1] is a Hilbert space, {P0(x),
P1(x), . . . , PN (x)} ⊂ H is the set of Müntz-Legendre polynomials and Y = span{P0(x),
P1(x), . . . , PN (x)}. Let g be an arbitrary function in H. Since Y is a finite dimen-
sional vector space, g has the best unique approximation such as g̃ out of Y , that
is

∃g̃ ∈ Y, s.t ∀y ∈ Y, ∥g − g̃∥ ≤ ∥g − y∥. (2.6)

Then

∀y ∈ Y, ⟨g − g̃, y⟩ = 0, (2.7)

where, ⟨, ⟩ denotes inner product.
On the other hand, g̃ ∈ Y then the unique coefficients a0, a1, . . . , aN exist such

that

g(x) ≃ g̃(x) =

N∑
n=0

anPn(x) = ATΦ(x), (2.8)
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where

A = [a0, a1, . . . , aN ]T , Φ(x) = [P0(x), P1(x), . . . , PN (x)]T , (2.9)
and T indicates transposition. Using Eq. (2.7), we get

⟨g(x)−ATΦ(x), Pn(x)⟩ = 0, n = 0, 1, . . . , N. (2.10)
Then the coefficient vector A can be obtained as follows:

AT = GTD−1, (2.11)
where

G = [g0, g1, . . . , gN ]T , gn =

∫ 1

0

g(x)Pn(x)dx, n = 0, 1, . . . , N,

and

D =

∫ 1

0

ΦT (x)Φ(x)dx =


1

2λ0+1 0 · · · 0

0 1
2λ1+1 · · · 0

...
... . . . ...

0 0 · · · 1
2λN+1

 . (2.12)

Remark 2.3. Assume that Dkγy ∈ C[0, 1], (k = 0, 1, . . . , N), Y = span{P0(x),
P1(x), . . . , PN (x)}. Since, g̃(x) is the best approximation of g out of Y , g̃(x) ∈ Y ,
therefore, the error bound of the numerical solution g̃(x) utilizing Müntz-Legendre
polynomials series can be achieved as:

∥g−g̃∥2 ≤ Mγ

Γ((N + 1)γ + 1)
√
((2N + 2)γ + 1)

, Mγ = supx∈[0,1]|D(N+1)γg(x)|.

(2.13)

∥g − g̃∥∞ ≤ Mγ

Γ((N + 1)γ + 1)
, Mγ = supx∈[0,1]|D(N+1)γg(x)|. (2.14)

Proof. Consider

ĝ(x) =

N∑
k=0

xkγ

Γ(kγ + 1)
Dkγg(0+).

Considering Definition 2.2, we have

g(x) =

N∑
k=0

xkγ

Γ(kγ + 1)
Dkγg(0+) +

x(N+1)γ

Γ((N + 1)γ + 1)
D(N+1)γg(ξ), ξ ∈ [0, 1],

and

|g(x)− ĝ(x)| ≤ x(N+1)γ

Γ((N + 1)γ + 1)
sup

x∈[0,1]

|D(N+1)γg(x)|.
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Using the above equation, we get

∥g − g̃∥22 ≤ ∥g − ĝ∥22 =

∫ 1

0

|g(x)− ĝ(x)|2dx ≤
∫ 1

0

x(2N+2)γ

Γ((N + 1)γ + 1)2
M2

γdx

=
M2

γ

Γ((N + 1)γ + 1)2

∫ 1

0

x(2N+2)γdx =
M2

γ

Γ((N + 1)γ + 1)2((2N + 2)γ + 1)
.

where Mγ = supx∈[0,1]|D(N+1)γg(x)|. By taking the square roots, Eq. (2.13) is
derived. Similar to the proof of Eq. (2.13), we prove Eq. (2.14). For this approach,
using Definition 2.2, we have

∥g − g̃∥∞ ≤ ∥g − ĝ∥∞ = sup
x∈[0,1]

|g(x)− ĝ(x)| ≤ x(N+1)γ

Γ((N + 1)γ + 1)
Mγ

≤ Mγ

Γ((N + 1)γ + 1)
.

Then, the proof is complete. □

3. Riemann-Liouville operational matrix of Müntz-Legendre
polynomials

Suppose Φ(x) is Müntz-Legendre polynomials vector proposed in Eq. (2.9), we
have

IνΦ(x) ≃ F (ν, γ)Φ(x), (3.1)

where F (ν, γ) is operational of the Riemann-Liouville integration of order ν. Using
definition of the operator Iν , we have

IνPn(x) =
1

Γ(ν)
xν−1 ∗ Pn(x), n = 0, 1, . . . , N. (3.2)

Now, by taking Laplace transform of Eq. (3.2), we get

L[IνPn(x)] = L[ 1

Γ(ν)
xν−1]L[Pn(x)], n = 0, 1, . . . , N, (3.3)

where

L[ 1

Γ(ν)
xν−1] = r−v. (3.4)

Also, for Pn(x), we have

L[Pn(x)] = L[
n∑

k=0

cn,kx
kγ ] =

n∑
k=0

cn,kL[xkγ ] =

n∑
k=0

cn,kΓ(1 + kγ)r−1−kγ . (3.5)

Using Eqs (3.4) and (3.5), we obtain
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L(IνPn(x)) =

n∑
k=0

cn,kΓ(1 + kγ)r−1−kγ−ν .

Now, taking the inverse Laplace transform of the above equation, obtains

IνPn(x) =

n∑
k=0

cn,kΓ(1 + kγ)
xkγ+ν

Γ(1 + kγ + ν)
. (3.6)

Then, we expand xkγ+ν as

xkγ+ν ≃
N∑
l=0

ãlPl(x) = ÃT
nΦ(x). (3.7)

Therefore, we get

F (ν, γ) = [Ân], n = 0, 1, . . . , N, (3.8)
where

Ân =

n∑
k=0

cn,kÃ
T
nΓ(1 + kγ)

Γ(1 + kγ + ν)
. (3.9)

Remark 3.1. As in the discussion above, the error bound of F (ν,γ) is as follows:

E(ν,γ)(x) = IνΦ(x)− F (ν,γ)Φ(x), E(ν,γ) =


e0
e1
...
eN

 . (3.10)

Only the approximation occurs in Eq. (3.7), using Eq. (2.14), we get

∥en∥∞ ≤
n∑

k=0

Mk,γ

Γ((N + 1)γ + 1)
, n = 0, 1, . . . , N, (3.11)

where Mk,γ = supx∈[0,1] |(xkγ+ν)(N+1)γ(x)|.

4. Numerical method

This work is motivated by the desire to find approximate solution of fractional
order Fredholm-Volterra integro-differential equation

Dνy(x) = g(x)y(x) + f(x) + λ

∫ 1

0

k1(x, t)N1(t, y(t), D
νy(t))dt (4.1)

+ µ

∫ x

0

k2(x, t)N2(t, y(t), D
νy(t))dt, x ∈ [0, 1],
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subject to

y(i)(0) = yi0, i = 0, 1, . . . , s,

where m − 1 < ν ≤ m, m ∈ N , f(x), g(x), N1(t, y(t), D
νy(t)), N2(t, y(t), D

νy(t))
are known functions, k1(x, t), k2(x, t) ∈ L2([0, 1] × [0, 1]) are continuous and known
functions, y(x) is an unknown function, λ, µ and yi0 are real constants, s = 0, 1,
. . . , ⌈ν⌉ − 1.

In our method, we expand Dνy(x), f(x) and g(x) with respect to the Müntz-
Legendre polynomials as follows:

Dνy(x) ≃ yTΦ(x), f(x) ≃ fTΦ(x), g(x) ≃ gTΦ(x). (4.2)
Also, by the initial condition and using property of fractional integration, we obtain

y(x) ≃ yTF (ν,γ)Φ(x) + E(x), E(x) =

s∑
i=0

xi

i!
yi0,

then, we get

y(x) ≃ yTF (ν,γ)Φ(x) + ETΦ(x), (4.3)
where

E(x) ≃ ETΦ(x).

Now, we substitute these approximations in Eq. (4.1), we have:

yTΦ(x) = gTΦ(x)(ΦT (x)(F (ν,γ))T y +ΦT (x)E) + fTΦ(x) (4.4)

+ λ

∫ 1

0

k1(x, t)N1

(
t, yTF (ν,γ)Φ(t) + ETΦ(t), yTΦ(t))

)
dt

+ µ

∫ x

0

k2(x, t)N2

(
t, yTF (ν,γ)Φ(t) + ETΦ(t), yTΦ(t))

)
dt.

Applying the Gauss-Legendre numerical integration for Eq. (4.4), we achieve

yTΦ(x) = gTΦ(x)ΦT (x)(F (ν,γ))T y + gTΦ(x)ΦT (x)E + fTΦ(x) (4.5)

+ λ

ñ∑
j=0

[
ωj

2
k1(x,

1

2
+

τj
2
)N1

(
1

2
+

τj
2
, yTF (ν,γ)Φ(

1

2
+

τj
2
)

+ ETΦ(
1

2
+

τj
2
), yTΦ(

1

2
+

τj
2
))

)]
+µ

ñ∑
j=0

[
x

2
ωjk2(x,

x

2
+

x

2
τj)N2

×
(
x

2
+

x

2
τj , y

TF (ν,γ)Φ(
x

2
+

x

2
τj) + ETΦ(

x

2
+

x

2
τj), y

TΦ(
x

2
+

x

2
τj))

)]
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where ωj and τj are weights and nodes of Gauss-Legendre. The resulting equation
is solved using Petrov-Galerkin method which is convergence [8] as

⟨H,ϕ⟩ = 0.

For this approach, we consider ϕ(x) = Φ(x), where

H(x) = yTΦ(x)−
[
gTΦ(x)ΦT (x)(F (ν,γ))T y + gTΦ(x)ΦT (x)E + fTΦ(x)

+ λ

ñ∑
j=0

[
ωj

2
k1(x,

1

2
+

τj
2
)N1

(
1

2
+

τj
2
, yTF (ν,γ)Φ(

1

2
+

τj
2
)

+ ETΦ(
1

2
+

τj
2
), yTΦ(

1

2
+

τj
2
)

)]
+µ

ñ∑
j=0

[
x

2
ωjk2(x,

x

2
+

x

2
τj)

N2

(
x

2
+

x

2
τj , y

TF (ν,γ)Φ(
x

2
+

x

2
τj) + ETΦ(

x

2
+

x

2
τj), y

TΦ(
x

2
+

x

2
τj)

)]]
.

Now, we can solve the obtained system of algebraic equations by any iterative
method.

5. Error estimate

Theorem 5.1. Suppose that the function y ∈ CN+1[0, 1] and ỹ is approximate of y
using Müntz-Legendre polynomials. Moreover, let

1) |Ni(t, y,D
νy)| ≤ ρi, i = 1, 2, ∀x ∈ [0, 1]

2) Nonlinear terms Ni, i = 1, 2, are satisfied in the following conditions

|Ni(t, y1, D
νy1)−Ni(t, y2, D

νy2)| ≤ L|y1 − y2|,

where L > 0.
3) |ki(x, t)| ≤ k̃i, i = 1, 2, ∀(x, t) ∈ [0, 1]× [0, 1].

Consider

êN (x) = ∥λ
∫ 1

0

k1(x, t)

(
N1(t, y,D

νy)−N1(t, ỹ, D
ν ỹ)

)
dt

+ µ

∫ x

0

k2(x, t)

(
N2(t, y,D

νy)−N2(t, ỹ, D
ν ỹ)

)
dt∥∞.

Then, we have:

êN (x) ≤ LMγ(|λ|k̃1 + |µ|k̃2)
Γ((N + 1)γ + 1)

, (5.1)

where Mγ = supx∈[0,1]|D(N+1)γg(x)|.

Proof. By using Eq. (2.14) and 0 ≤ x ≤ 1, we have
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êN (x) = ∥λ
∫ 1

0

k1(x, t)

(
N1(t, y,D

νy)−N1(t, ỹ, D
ν ỹ)

)
dt

+ µ

∫ x

0

k2(x, t)

(
N2(t, y,D

νy)−N2(t, ỹ, D
ν ỹ)

)
dt∥∞

≤ |λ|∥
∫ 1

0

k1(x, t)

(
N1(t, y,D

νy)−N1(t, ỹ, D
ν ỹ)

)
dt∥∞

+ |µ|∥
∫ x

0

k2(x, t)

(
N2(t, y,D

νy)−N2(t, ỹ, D
ν ỹ)

)
dt∥∞

≤ |λ|k̃1
∫ 1

0

∥N1(t, y,D
νy)−N1(t, ỹ, D

ν ỹ)∥∞dt

+ |µ|k̃2
∫ x

0

∥N2(t, y,D
νy)−N2(t, ỹ, D

ν ỹ)∥∞dt

≤ |λ|k̃1L
∫ 1

0

∥y − ỹ∥∞dt+ |µ|k̃2L
∫ x

0

∥y − ỹ∥∞dt

≤ |λ|k̃1L
∫ 1

0

(
Mγ

Γ((N + 1)γ + 1)

)
dt+ |µ|k̃2L

∫ x

0

(
Mγ

Γ((N + 1)γ + 1)

)
dt

≤ LMγ(|λ|k̃1 + |µ|k̃2)
Γ((N + 1)γ + 1)

.

□

Theorem 5.2. Let y(x), ỹ(x) be the analytical solution and approximate solution of
Eq. (4.1), respectively. Moreover assume that

1) |Ni(t, y,D
νy)| ≤ ρi, i = 1, 2, ∀x ∈ [0, 1]

2) Nonlinear terms Ni, i = 1, 2, are satisfied in the following conditions

|Ni(t, y1, D
νy1)−Ni(t, y2, D

νy2)| ≤ L|y1 − y2|,
where L > 0.

3) |ki(x, t)| ≤ k̃i, i = 1, 2, ∀(x, t) ∈ [0, 1]× [0, 1].

Consider

G(y(x)) = Dνy(x)−
(
g(x)y(x) + f(x) + λ

∫ 1

0

k1(x, t)N1(t, y(t), D
νy(t))dt

+ µ

∫ x

0

k2(x, t)N2(t, y(t), D
νy(t))dt

)
. (5.2)

Then, we have

Ê(x) ≤ Mγ

Γ((N + 1)γ + 1)
(2 + (E(ν,γ)(x) +

Mγ

Γ((N + 1)γ + 1)
)) + êN (x). (5.3)
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where Ê(x) = ∥G(y)−G(ỹ)∥∞, Mγ = supx∈[0,1]|D(N+1)γg(x)|.

Proof. We consider Eq. (5.2) and 0 ≤ x ≤ 1. then, we have

Ê ≤ ∥Dνy(x)−Dν ỹ(x)− (g(x)− g̃(x))(y(x)− ỹ(x))− (f(x)− f̃(x))

− λ

∫ 1

0

k1(x, t)[N1(t, y,D
νy)−N1(t, ỹ, D

ν ỹ)]dt

− µ

∫ x

0

k2(x, t)[N2(t, y,D
νy)−N2(t, ỹ, D

ν ỹ)]dt∥∞

≤ ∥Dνy(x)−Dν ỹ(x)∥∞ + ∥g − g̃∥∞∥y − ỹ∥∞ + ∥f − f̃∥∞

+ ∥λ
∫ 1

0

k1(x, t)

(
N1(t, y,D

νy)−N1(t, ỹ, D
ν ỹ)

)
dt

+ µ

∫ x

0

k2(x, t)

(
N2(t, y,D

νy)−N2(t, ỹ, D
ν ỹ)

)
dt∥∞.

Now, using Eqs. (2.14), (3.11) and Theorem 5.1, we derive

Ê ≤ Mγ

Γ((N + 1)γ + 1)
+ (

Mγ

Γ((N + 1)γ + 1)
)(E(ν,γ)(x) +

Mγ

Γ((N + 1)γ + 1)
)

+
Mγ

Γ((N + 1)γ + 1)
+ êN (x) (5.4)

=
Mγ

Γ((N + 1)γ + 1)
(2 + (E(ν,γ)(x) +

Mγ

Γ((N + 1)γ + 1)
)) + êN (x).

Then, the proof is complete. □

6. Illustrative test problems

Here, we employ the proposed method with λk = kγ, for finding the approximate
solution of some examples in three subsections and show that the numerical technique
is both accurate and efficient for solving this class of fractional equations.

6.1. Fractional-order Volterra integro-differential equation (FVIDE).
Example 6.1.1. Let us consider the following problem

{
D0.5y(x) = f(x) +

∫ x

0

√
x+ ty(t)dt, 0 ≤ x ≤ 1,

y(0) = 0,

f(x) is a function that the analytical solution of this example is y(x) = x2. We
apply our method to find numerical solution of this problem for N = 3 and various
values of γ. For this approach, we consider

D0.5y(x) ≃ ATΦ(x), A = [a0, a1, a2, a3]
T , Φ(x) = [P0(x), P1(x), P2(x), P3(x)]

T ,

f(x) ≃ fTΦ(x),
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Figure 1. Absolute errors between the analytical and approximate so-
lutions, with N = 3 and a) γ = 1, b) γ = 1

2
for Example 6.1.1.
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 ,

substituting these approximation in the problem and applying Petrov-Galerkin method,
we achieve the approximate solution of this problem.

Figure 1 displays the absolute errors achieved by the proposed technique. In this
figure, we can see the effectiveness of λk, for this problem.

Example 6.1.2. We consider the nonlinear FVIDE given in [4]

D0.5y(x) = g(x)y(x) + f(x) +
√
x

∫ x

0

y2(t)dt, y(0) = 0,

such that

g(x) = 2
√
x+2x0.75−(

√
x+x0.75)Ln(1+x), f(x) =

2Arcsinh(
√
x)

√
π
√
1 + x

−2x0.75.

The analytical solution of this problem is y(x) = Ln(1 + x). The absolute error
derived by using the proposed method with γ = 1

2 , N = 4, 6 are 1.568337 × 10−4

and 2.472309× 10−5, respectively. However, these values for collocation method with
M = 4, 6 are 1× 10−2 [4].

Example 6.1.3. Let us consider the following nonlinear FVIDE [14]
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Figure 2. Comparison of y(x) for N = 5, γ = ν, ν = 0.6, 0.7, 0.8, 0.9, 1
and the analytical solution for Example 6.1.3.

Dνy(x) = 1 +

∫ x

0

y(t)Dνy(t)dt, 0 ≤ x ≤ 1, 0 < ν ≤ 1,

with the initial condition y(0) = 0. The analytical solution of this example for ν = 1

is y(x) =
√
2tan(

√
2
2 x).

Figure2 displays the absolute errors for ν = γ = 1 for various values of N . Also,
this figure shows the obtained results for N = 5, ν = γ with different choices of ν
and the analytical solution. The comparisons display that as ν → 1, the obtained
solutions tend to the analytical solution. We can see that the presented scheme is in
high agreement with the analytical solution, in this figure.

6.2. Fractional Fredholm integro-differential equation (FFIDE).

Example 6.2.1. Consider the following linear FFIDE [18]

Dνy(x) = f(x)−
∫ 1

0

y(t)dt,

where y(0) = 0 and f(x) is a function that the analytical solution of this example is
y(x) = x

3
2 +x. TABLE 1 displays the comparison of approximate solution for various

values of ν, γ,N = 3. The method is based on the Chebyshev wavelet of second kind
for M = 4, k = 4 and the exact solution.

Example 6.2.2. Consider the following nonlinear FFIDE [17]
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Table 1. Comparison of approximate solution for various values of
ν, γ,N = 3. Method based on Chebyshev wavelet of second kind and
analytic solution for Example 6.2.1.

x Exact solution Chebyshev wavelet Present method Present method
k=4, M=4 N = 3, γ = 1 N = 3, γ = 1

2

0.1 0.131622777 0.1333 0.1333 0.131622776
0.3 0.464316767 0.4661 0.4628 0.464316765
0.5 0.853553388 0.8556 0.8524 0.853553390
0.7 1.285662019 1.2880 1.2874 1.285662016
0.9 1.753814968 1.7564 1.7531 1.753814965

Table 2. Comparison of the root-mean-square error in Example 6.2.2.

Method ∥e∥2
CAS wavelet (k=4, M=1; 48 number basis) 5.3445× 10−6

Chebyshev wavelet (k=4, M=2; 16 number basis) 1.4484× 10−6

Chebyshev wavelet (k=5, M=2; 32 number basis) 2.3374× 10−7

Present method (γ = 1
2 , N=4; 5 number basis) 2.5018× 10−15

D0.5y(x) = f(x) +

∫ 1

0

xty4(t)dt, 0 ≤ x ≤ 1,

where y(0) = 0 and f(x) = 1
Γ(0.5) (

8
3

√
x3 − 2

√
x)− x

1260 . The analytic solution of the
problem is y(x) = x2−x. The comparison results in TABLE 2 displays the comparison
results between the root-mean-square error for this problem using 48 (k = 4,M = 1)
CAS wavelet basis [17], 16 (k = 4,M = 2) the second kind Chebyshev wavelet basis
[21] and present method for γ = 0.5 by only 5 (N = 4) Müntz-Legendre basis. In this
table, we can see that the proposed method is effective.

6.3. Fractional Volterra-Fredholm integro-differential equations (FVFIDE).

Example 6.3.1. Consider the following linear FVFIDE

Dνy(x) = f(x)−
∫ x

0

√
x− ty(t)dt−

∫ 1

0

(x+ t)2y(t)dt,

where y(0) = 0, f(x) is a function that the analytical solution of this problem for
ν = 1

2 is y(x) = x2. FIGURE 3 shows the comparison of y(x) for N = 7, γ = ν, and
ν = 0.5, 0.7, 0.9, 1. Also, this figure displays the absolute error of ν = γ = 1

2 . In this
figure, we can see that the technique is convergence to the analytic solution of this
equation.

Example 6.3.2. Consider the non-linear equation [11]
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Figure 3. The comparison of y(x) for N = 7 , γ = ν with various values
of ν and the analytic solution for ν = 1

2
, in Example 6.3.1.

Figure 4. The comparison of y(x) for N = 4 , γ = ν with ν = 1 and the
exact solution for ν = 1, in Example 6.3.2.

Dν+1y(x) =

∫ x

0

(et + 1)y2(t)dt+

∫ 1

0

xty2(t)dt+ g(x),

where y(0) = y
′
(0) = 0, and g(x) is given that the analytical solution is y(x) =

ex − x− 1 in ν = 1.
We apply the present technique for N = 4, 6 and various values of γ = ν. FIGURE

4 shows the comparison of numerical results for γ = ν = 1 and the analytical solution
for ν = 1. In comparing this figure with Figure. 10 in [11] which is the obtained
results using the Legendre wavelets method, we can see that we have found a good
approximation than the Legendre wavelets method by using a small number of bases.
For more investigation, we present the absolute errors for N = 4, 6 and γ = ν = 1.

FIGURE 4 and TABLE 3 show the advantages and the accuracy of the proposed
method to solve nonlinear FVFIDEs.

7. Conclusion

In this study, we presented an efficient technique to find numerical solution of
fractional order Volterra-Fredholm integro-differential equations. This technique is
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Table 3. The absolute errors for ν = γ = 1 and N = 4, 6 for Example 6.3.2.

x N=4 N=6
0.1 7.4286× 10−5 1.11801× 10−6

0.3 4.9982× 10−5 3.11964× 10−7

0.5 1.3212× 10−4 2.85482× 10−5

0.7 2.4035× 10−5 2.86379× 10−6

0.9 1.4888× 10−3 1.74588× 10−4

based on Müntz-Legendre polynomials and Petrove-Galerkin method. We derived a
new operational matrix of fractional integration using Laplace transform for Müntz-
Legendre polynomials. This operational matrix and Petrove-Galerkin method are
employed to approximate the problem. We proposed an estimation of the error.
Numerical examples are proposed to test the efficiency, effectiveness and accuracy of
the present scheme.

Acknowledgments

The authors are grateful to editor and anonymous referees for their constructive
comments, which are very helpful to improve the presentation of the paper.

References
[1] G. V. Badalyan, Generalization of Legendre polynomials and some of their applications, Akad.

Nauk. Armyan. SSR Izv. Fiz.-Mat. Estest. Tekhn. Nauk, 8(5) (1955), 1-28.
[2] R. L. Bagley and J. Torvik, Fractional calculus-a different approach to the analysis of viscoelas-

tically damped structures, AIAA Journal, 21(5) (1983), 741-748.
[3] A. Carpinteri, P. Cornetti, and A. Sapora, Nonlocal elasticity: an approach based on fractional

calculus. Meccanica, 49(11) (2014), 2551-2569.
[4] M. R. Eslahchi, M. Dehghan, and M. Parvizi. Application of the collocation method for solv-

ing nonlinear fractional integro-differential equations, Journal of Computational and Applied
Mathematics 257 (2014), 105-128.

[5] S. Esmaeili, Numerical solution of gas solution in a fluid: fractional derivative model, Iranian
Journal of Mathematical Chemistry, 8(4) (2017), 425-437.

[6] S. Fazeli, Application of the block backward differential formula for numerical solution of Volterra
integro-differential equations. Computational Methods for Differential Equations, 3(2) (2015),
99-100.

[7] E. Keshavarz, Y. Ordokhani, and M. Razzaghi, Numerical solution of nonlinear mixed Fredholm-
Volterra integro-differential equations of fractional order by Bernoulli wavelets. Computational
Methods for Differential Equations, 7(2) (2019), 163-176.

[8] K. Maleknejad, M. Rabbani, N. Aghazadeh, and M. Karami, A wavelet Petrov–Galerkin method
for solving integro-differential equations, International Journal of Computer Mathematics, 86(9)
(2009), 1572-1590.

[9] S. Mashayekhi and M. Razzaghi. Numerical solution of nonlinear fractional integro-differential
equations by hybrid functions, Engineering Analysis with Boundary Elements, 56 (2015), 81-89.

[10] R. P. Meilanov and R. A. Magomedov, Thermodynamics in Fractional Calculus, Journal of
Engineering Physics and Thermophysics, 87(6) (2014), 1521-1531.

[11] Z. Meng, L. Wang, H. Li, and W. Zhang, Legendre wavelets method for solving fractional
integro-differential equations, International Journal of Computer Mathematics, 92(6) (2015),
1275-1291.



CMDE Vol. 8, No. 3, 2020, pp. 408-423 423

[12] P. C. McCarthy, J. E. Sayre, and B. L. R. Shawyer, Generalized legendre polynomials, J. Math.
Anal. Appl., 177 (1993), 530-537.

[13] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential
Equations, John Wiley and Sons, Inc., 1993.

[14] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Fractional-order Bernoulli functions and their
applications in solving fractional Fredholem–Volterra integro-differential equations, Applied Nu-
merical Mathematics, 122 (2017), 66-81.

[15] P. Rahimkhani, Y. Ordokhani, and E. Babolian. Müntz-Legendre wavelet operational matrix of
fractional-order integration and its applications for solving the fractional pantograph differential
equations, Numerical Algorithms, 77(4) (2018), 1283-1305.

[16] S. Sabermahani, Y. Ordokhani, and S. A. Yousefi, Numerical approach based on fractional-order
Lagrange polynomials for solving a class of fractional differential equations, Comp. Appl. Math.,
37 (2018), 3846-3868.

[17] H. Saeedi, M. M. Moghadam, N. Mollahasani, and G. N. Chuev, A CAS wavelet method for
solving nonlinear Fredholm integro-differential equations of fractional order, Commun Nonlinear
Sci Numer Simulat, 16 (2011), 1154-1163.

[18] A. Setia, Y. Liu, and A. S. Vatsala, Solution of linear fractional Fredholm integro-differential
equation by using second kind Chebyshev wavelet. In: Information Technology: New Generations
(ITNG), 11th International Conference on. IEEE, (2014), 465-469.

[19] U. F. Stefánsson, Asymptotic properties of Müntz orthogonal polynomials, Georgia Institute of
Technology, 2010.

[20] S. Yüzbaşı, E. Gök, M. Sezer, Müntz-Legendre Matrix Method to solve Delay Fredholm Integro-
Differential Equations with constant coefficients, New Trends in Mathematical Sciences, 3(2)
(2015), 159-167.

[21] L. Zhu and Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the
second kind Chebyshev wavelet, Commun Nonlinear Sci Numer Simulat, 17 (2012), 2333-2341.


	1. Introduction
	2. Preliminaries
	2.1. Müntz-Legendre polynomials
	2.2. Function approximation

	3. Riemann-Liouville operational matrix of Müntz-Legendre polynomials
	4. Numerical method
	5. Error estimate
	6. Illustrative test problems
	6.1. Fractional-order Volterra integro-differential equation (FVIDE)
	6.2. Fractional Fredholm integro-differential equation (FFIDE)
	6.3. Fractional Volterra-Fredholm integro-differential equations (FVFIDE)

	7. Conclusion
	Acknowledgments
	References

