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Abstract In the present paper the process of finding new solutions from previous solutions of

a given fractional differential equation (FDE) is considered. For this issue, first we
should construct an exact solution by using the symmetry operators of the equation.

Then, the commutator brackets of the obtained operators give new solutions from

old ones via a systematic method.
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1. Introduction

In the last decade FPDEs have attracted considerable interest. This kind of equa-
tion plays an important role in various fields of sciences, for example engineering, elec-
trochemistry, biology, economics, modeling, electronics, dynamics, and many other
sciences [10, 12, 13]. Lie symmetries method have many efficient applications in
physics and mathematics. As an important application of symmetry operators is the
reduction procedure. This is possible from a similarity variable obtaining from the
symmetry and Erdelyi-Kober. In this paper time FDE

Dα
t u = xuxx + f(x)ux, (1.1)

is considere, where Dα
t u is the fractional derivative of order α , 0 < α ≤ 1 and f(x)

is an arbitrary function.
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Firstly, we present the complete algebra of Lie point symmetries for Eq. (1.1). With
the aid of calculated symmetries, Eq. (1.1) is reduced and a list of exact solutions are
found [1, 2, 8, 9]. The main goal of the paper is to build new solutions from the old
ones by using the obtained exact solutions.

Some researches applied Lie group method for FDEs in the sense of the Caputo
derivative and derived similarity solutions [4, 11]. In this work, we give group classi-
fication of Eq. (1.1), based on Riemann-Lioville derivative [5].

The organization of the paper sets in 6 sections; In section 2, we give some notations
and preliminaries of equation with fractional order. The infinitesimal transformations
and the determining equations of Lie symmetries are introduced in section 3. Section
4 is devoted to reduction precess for obtaining exact solutions of Eq. (1.1) in three
separated cases. New exact solutions with the aid of obtained solutions, are presented
in section 5. Finally, section 6 is dedicated to obtained results.

2. Fractional Calculus

There is no unique definition for fractional derivatives, such as modified Riemann-
Liouville derivative, Grunwald-Letnikov derivative, Caputos, Riesz, Miller and Ross
fractional derivative . Here we consider the most common definition named in Rie-
mann and Liouvill derivative. In the sequel that, based on what is required in this
work we give some basic definitions and properties of the fractional calculus theory
[6]. Let us define

Dα
t f(t) =


dnf

dtn
α = n

dn

dtn
In−αf(t) 0 ≤ n− 1 < α < n,

(2.1)

where n ∈ N , Iβf(t) is the Riemann-Liouville fractional integral of order β , namely

Iβf(t) =
1

Γ(µ)

∫ t

0

(t− s)(β−1)f(s)ds, β > 0.

By definition, we have I0f(t) = f(t) and it satisfies the stability property Iν1t I
ν2
t f(t) =

Iν1+ν2
t f(t) and Γ(ν) =

∫ ∞
0

xν−1e−xdx, ν ∈ R+, is the standard gamma function.

Definition 2.1. The Riemann-Liouville fractional partial derivative is defined by,

∂αt u(t, x) =


∂nu

∂tn
α = n

1

Γ(n− α)

∂n

∂tn

∫ t

0

(t− s)n−α−1u(s, x)ds 0 ≤ n− 1 < α < n,

where ∂nt is the usual derivative of integer order n.

Some useful formulas and properties of Riemann-Liouville derivative have been
summerized in [7].
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The laplace transform of Riemann-Liouville fractional derivative of order α > 0 is
[14]

L{Dαf(t)} = sαF (s)−
∞∑
k=0

sk{Dα−k−1
t f(t)}t=0. (2.2)

where L{f(t)} = F (s) =

∫ ∞
0

e−stf(t)dt. A two-parameter function of Mittag-Leffler

type was defined by the series expansion [15]

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0.

Some of the relationships are as follows:

Dν [tβ−1Eα,β(atα)] = tβ−ν−1Eα,β−ν(atα), ν > 0, α > 0, a ∈ R.

L{tαk+β−1E
(k)
α,β(±atα)} =

k!sα−β

(sα ∓ a)k+1
, Re(s) > |a|

1
α .

Definition 2.2. The Erdelyi-Kober fractional differential operator P τ,αβ of order α

is defined as [6]

(
P τ,αβ g

)
:=

n−1∏
j=0

(
τ + j − 1

β
θ
d

dθ

)(
Kτ+α,n−α
β g

)
(θ),

n =

{
[α] + 1 α /∈ N
α α ∈ N,

where (
Kτ,α
β g

)
:=

{
1

Γ(α)

∫∞
1

(u− 1)α−1u−(τ+α)g(θu
1
β )du α > 0

g(θ) α = 0,
(2.3)

is the Erdelyi-Kober fractional integral operator.
Also we have

∂n

∂tn

[
tχ(Kτ,n−α

β g)
]

(θ) = tχ−n
n−1∏
j=0

(
χ− n+ 1 + j + aθ

d

dθ

)(
Kχ−n+α+1,n−α
β g

)
(θ)

= tχ−n
(
Pχ−n+1,α
β (θ)

)
, (2.4)

if

t
∂

∂t
g(θ) = aθ

d

dθ
g(θ), θ = xta.
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3. Symmetry analysis of FDEs.

Lie symmetries with the prolongation formula for FDEs have been given by Gazizov
[3]. According to this method, Eq.FDE (1.1) is invariant under a one parameter
continuous transformations with parameter ε [16, 17, 18],

t∗ = t+ εξ0(t, x, u) +O(ε2), x∗ = x+ εξ1(t, x, u) +O(ε2),

u∗ = u+ εη(t, x, u) +O(ε2),
∂αu∗

∂t∗
=
∂αu

∂tα
+ εζα,t(t, x, u) +O(ε2),

∂u∗

∂x∗
=
∂u

∂x
+ εζx(t, x, u) +O(ε2),

∂2u∗

∂x∗2
=
∂2u

∂x2
+ εζxx(t, x, u) +O(ε2),

(3.1)

where

ζx = Dxη − utDxξ
0 − uxDxξ

1, ζxx = Dxζ
x − uxtDxξ

0 − uxxDxξ
1,

ζα,t =
∂αη

∂tα
+ (ηu − αDt(ξ

0))
∂αu

∂tα
− u∂

αηu
∂tα

−
∞∑
n=1

(
α

n

)
Dn
t (ξ1)Dα−n

t (ux)

+

∞∑
n=1

[(
α

n

)
∂nηu
∂tn

−
(

α

n+ 1

)
Dn+1
t (ξ0)

]
Dα−n
t (u) + µ,

(3.2)

and

µ =

∞∑
n=2

n∑
m=1

m∑
k=1

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1

k!

tn−α

Γ(n− α+ 1)
(−u)r

∂m

∂tm
(uk−r)

∂n−m+k

∂tn−m∂uk
,

also
(
α
n

)
= Γ(α+1)

Γ(n+1)Γ(α+1−n) .

Here Dx denotes total derivative operator defined by:

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ . . . .

If

X = ξ0 ∂

∂t
+ ξ1 ∂

∂x
+ η

∂

∂u
, (3.3)

be a symmetry operator for the Eq. (1.1), which is known in the literature as an
infinitesimal operator or generator of the group G, we must have

ξ0 =
dt∗

dε
|ε=0 ξ1 =

dx∗

dε
|ε=0 η =

du∗

dε
|ε=0.

According to the infinitesimal invariance criterion, Eq. (1.1) admits transformation

group (3) if the prolonged vector field Pr(α,2)X annihilates (1.1) on its solution,
namely,

Pr(α,2)X (∆) |∇=0 = 0, ∆ = Dα
t u− xuxx − f(x)ux.
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The operator Pr(α,2)X takes the form:

Pr(α,2)X = X + ζα,t∂∂αt u + ζx∂ux + ζxx∂uxx ,

where ζx and ζxx are defined in (3.2). Now, we will investigate the invariance prop-
erties of the time fractional Eq. (1.1). The invariance criterion takes the form

ζα,t − (uxx + f ′(x)ux)ξ1 − f(x)ζx − xζxx = 0. (3.4)

Solving (3.4) along with (3.2), we derive the following characteristic system:

ξ1
t = ξ0

u = ξ1
u = ξ0

x = ηuu = 0,

xηu − αxξ0
t − ξ1 − x(ηu − 2ξ1

x) = 0,

− αf(x)ξ0
t − f ′(x)ξ1 + f(x)ξ1

x − x(2ηxu − ξ1
xx) = 0,

∂αt η − u∂αt ηu − f(x)ηx − xηxx = 0,(
α

n

)
∂nt ηu −

(
α

n+ 1

)
Dn+1
t ξ0 = 0.

With classification of solution of this system, we obtain solution of Eq. (1.1), for
arbitrary f(x) and α ∈ (0, 1], such as

ξ0 = c1t+ c2, ξ1 = αc1x+ c3
√
x, η = F1(x)u+ F2(t, x),

where c1, c2 and c3 are arbitrary constants.
For three cases we obtain different symmetries for Eq. (1.1).

• For β = f(x) = 1
2 , Eq. (1.1) translates to:

Dα
t u = xuxx +

1

2
ux. (3.5)

The Lie symmetries of Eq. (3.5) are found as follows:

X1 = αx
∂

∂x
+ t

∂

∂t
, X2 =

√
x
∂

∂x
, X3 =

∂

∂t
,

X4 = u
∂

∂u
, XF2

= F2(t, x)
∂

∂u
. (3.6)

• For β = f(x) = 3
2 , we have

Dα
t u = xuxx +

3

2
ux, (3.7)

with Lie symmetries,

X1 = αx
∂

∂x
+ t

∂

∂t
, X3 =

∂

∂t
, X4 = u

∂

∂u
,

X5 =
√
x
∂

∂x
− 1

2
√
x
u
∂

∂u
, XF2

= F2(t, x)
∂

∂u
. (3.8)

• For β = f(x) = 1+3
√
x

2(1+
√
x)

, the Eq. (1.1) turns to

Dα
t u = xuxx +

1 + 3
√
x

2(1 +
√
x)
ux, (3.9)
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with following symmetries:

X3 =
∂

∂t
, X4 = u

∂

∂u
, X6 = αx

∂

∂x
+ t

∂

∂t
+

α

2(1 +
√
x)
u
∂

∂u
,

X7 =
√
x
∂

∂x
− 1

2(1 +
√
x)
u
∂

∂u
, XF2

= F2(t, x)
∂

∂u
. (3.10)

4. Exact Solutions or Reduction equations by using Lie method

In this section we give some exact solutions for Eq. (3.5).

• At first, we consider the symmetry X1 = αx ∂
∂x + t ∂∂t , the corresponding

characteristic equation is of the form:

dx

αx
=
dt

t
=
du

0
. (4.1)

Integration of (4.1) provides the following similarity function

u = g(t, x) = g(θ) = g(xt−α).

Let n− α < α < n , n = 1, 2, 3, . . ..
According to the Riemann-Liouville fractional derivative, once we get:

∂αu

∂tα
=

∂

∂tn
1

Γ(n− α)

∫ t

0

(t− s)n−α−1
(
g(xs

−α
2 )ds

)
, (4.2)

Let ν = t
s , we have ds = − t

ν2 dν. So the above statement can be expressed
as:

∂αu

∂tα
=

∂

∂tn
1

Γ(n− α)

∫ t

0

tn−αν−(n−α+1)(ν − 1)n−α−1g(θνα)dν

=
∂

∂tn

[
tn−α

(
K1,n−α

2
α

g
)

(θ)
]

= t−α
n−1∏
j=0

(
1− α+ j + θ

d

dθ

)(
K1,n−α

1
α

g
)

(θ)

= t−α
(
P 1−α,α

1
α

g
)

(θ). (4.3)

By substituting the solution u = g(xt
−α
2 ) into FPDE (3.5), one can get:

∂αu

∂tα
= xuxx +

1

2
ux = t−α(θgξξ +

1

2
gξ). (4.4)

Thus, the time fractional equation (3.5) can be reduced into an FODE:(
P 1−α,α

1
α

g
)

(θ) = θg′′ +
1

2
g′. (4.5)

• For X2 =
√
x ∂
∂x , with substituting u = g(t) in Eq. ( 3.5) we have ∂αg

∂tα = 0 .

So with the aid of Laplace transformation (2.2) we obtain g(t) = tα−1

(α−1)! .

• For X3 = ∂
∂t , by using u = g(x) and placing it in Eq. (3.5), we have xg′′ +

1
2g
′ = 0. So g(x) = c1 + c2

√
x is a solution of Eq. (3.5).

Other solutions under symmetries X1 + X4, X2 + X4 and X3 + X4 are
summerized in Table (1), where A = 2

√
xt−αe−tE1,1−α(t).
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Table 1. Results For FDE (3.5)

Symmetries Exact Solutions Reduced equations

X1 u = g(xt−α) = g(θ)
(
P 1−α,α

1
α

g
)

(θ) = θg′′ + 1
2g
′.

X2 u = tα−1

Γ(α)

X3 u = c1 + c2
√
x

X1 +X4 u = tg(xt−α) = tg(θ)
(
P 2−α,α

1
α

g
)

(θ) = θg′′ + 1
2g
′.

X2 +X4 u = e2
√
xtα−1Eα,α(tα)

X3 +X4 u = et [c1 sinh(A) + c2 cosh(A)]

The exact solutions of Eq. (3.7) and (3.9) are given in Tables (2) and (3)
respectively. Graph of solutions are shown in Figure 1, 2, 3 and 4 too.

Table 2. Results For FDE (3.7)

Symmetries Exact Solutions Reduced equations

X1 u = g(xt−α) = g(θ)
(
P 1−α,α

1
α

g
)

(θ) =

θg′′ + 3
2g
′.

X3 u = c1 + c2√
x

X5 u = 1√
x
tα−1

Γ(α)

X3 +X4 u = et√
x

[c1 sinh(A) + c2 cosh(A)]

Table 3. Results For FDE (3.9)

Symmetries Exact Solutions Reduced equations
X3 u = c1 + c2

1+
√
x

X6 u =
√
x

1+
√
x
g(xt−α) =

√
x

1+
√
x
g(θ)

(
P 1−α,α

1
α

g
)

(θ)

= θg′′ + 3
2g
′.

X7 u = tα

(1+
√
x)Γ(α)

X3 +X4 u = et

1+
√
x

[
c1 cosh(2

√
ax) + c2

√
x

2
sinh(2

√
ax)√

ax

]

5. New solutions obtaining from old ones

In the previous section we found some exact solutions by using symmetry operators.
In this part we may construct further solutions by the property that symmetries map
solutions to solutions. To construct new solutions, one uses the property that the
Lie bracket of Xi with XF2 gives another member of the class of symmetries of the
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form of XF2
. This provides a route to the generation of new similarity solutions

associated to Xi. The structure of the new solutions constructed from Lie brackets

of the symmetries are coming in Table 4 with B =
√
xΓ(−α,t)

Γ(α) .

Table 4. New solutions

Lie Brackets New Solutions

[X2, XF2
] =

(√
x∂fold∂x

)
∂
∂u

√
x∂fold∂x = 0

Eq. (3.5)
[X3, XF2

] =
(
∂fold
∂t

)
∂
∂u

∂fold
∂t = 0

[X2 +X4, XF2
] =

(√
x∂fold∂x − fold

)
∂
∂u

√
x∂fold∂x − fold = 0

[X3 +X4, XF2
] =

(
∂fold
∂t − fold

)
∂
∂u et

[
2 sinh(2

√
B) + 2 cosh(2

√
B)
]

×
[

xe−t

t1+αΓ(−α) + 2B
] [

xe−t

2t1+αΓ(−α)
√
B

]
−fold = 0

[X3, XF2 ] =
(
∂fold
∂t

)
∂
∂u

∂fold
∂t = 0

Eq. (3.7) [X5, XF2 ] =
(√

x∂fold∂x + 1
2
√
x
fold

)
∂
∂u

√
x∂fold∂x + 1

2
√
x
fold = 0

[X3 +X4, XF2
] =

(
∂fold
∂t − fold

)
∂
∂u

et√
x

[
2 sinh(2

√
B) + 2 cosh(2

√
B)
]

×
[

xe−t

t1+αΓ(−α) + 2B
] [

xe−t

2t1+αΓ(−α)
√
B

]
−fold = 0

[X3, XF2
] =

(
∂fold
∂t

)
∂
∂u

∂fold
∂t = 0

Eq. (3.9) [X7, XF2
] =

(√
x∂fold∂x + fold

2(1+
√
x)

)
∂
∂u

√
x∂fold∂x + fold

2(1+
√
x)

= 0

[X3 +X4, XF2 ] =
(
∂fold
∂t − fold

)
∂
∂u

∂fold
∂t − fold = 0

6. Conclusion

In the present paper, we studied the time-fractional Eq. (1.1) in the sense of Lie
point symmetry analysis. The complete classifications of the fractional Eq. (1.1) are
presented and all of the geometric vector field of this equation are obtained. We have
shown that, by using of Lie analysis, Eq. (1.1) can be transformed into FODE, and
the reduced equation is an FODE with Erdelyi-Kober operator. Some exact solutions
are found and consequently by using obtained solutions we present another solutions
for Eq. (1.1).
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Figure 1. u = tα−1/Γ(α)

Figure 2. u = 1√
x
tα−1

Γ(α)
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Figure 3. u = et√
x

[sinh(A) + cosh(A)]

Figure 4. u = tα

(1+
√
x)Γ(α)
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