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Abstract In this work, we discuss the existence of solutions of nonlinear fractional differential
equations. By using the topological degree theory, some results on the existence of

solutions are obtained. Our analysis relies on the reduction of the problem consid-

ered to the equivalent system of Fredholm integral equations. As applications, an
examples is also provided to illustrate our main results.
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1. Introduction

Nonlinear differential equation are crucial tools in the modeling of nonlinear real
phenomena corresponding to a great variety of events, in relation with several fields of
the physical sciences and technology. For instance, they appear in the study of the air
motion or the fluids dynamics, electricity, electromagnetism, or the control of nonlin-
ear processes, among others (see [2]). Moreover, most of the authors also considered
the fractional differential equations as an object of mathematical investigations, we
refer the readers to [1, 5, 6, 7, 8, 17] and the references therein for recent development
of the theory. Perturbation techniques are useful in the nonlinear analysis for study-
ing the dynamical system represented by nonlinear differential and integral equations.
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Evidently, some differential equation representing a certain dynamical system have
no analytical solution, so the perturbation of such problem can be helpful. The per-
turbed differential equations are categorized into various types. An important type
of these such perturbation is called a hybrid differential equation (i.e quadratic per-
turbation of a nonlinear differential equation ), see [3] and the reference therein.
Existence theory for real world problems which can be modeled by of fractional dif-
ferential equations with multi-point boundary conditions have attracted the attention
of many researchers and is a rapidly growing area of investigation, [2, 9, 15].
Recently, the hybrid differential equations have been much more attractive [1, 5, 16,
17] and then there have been many works on the theory of hybrid differential equa-
tion. Addition-ally, hybrid fixed point theory can be used to developed the existence
theory for the hybrid equation. The topological methods proved to be a powerful tool
in the study of various problems which appears in nonlinear analysis. We refer the
reader to [2, 9, 11, 12, 20, 21] for some results on existence and uniqueness of solution.
In [21], the author has applied the topological degree theory in order to obtain the
necessary and sufficient conditions for following nonlocal cauchy problem of the form{

Dαu(t) = f(t, u(t)); t ∈ I = [0, T ],

u(0) + g(u) = u0,

where Dα is the Caputo’s fractional derivative of order α ∈ (0, 1], u0 ∈ R and
f : I × R→ R is continuous. The result was extended to the case of boundary value
problem by Khan and Shah [11], who studied sufficient conditions for existence results
for the boundary value problem

Dαu(t) = f(t, u(t)); t ∈ I = [0, T ],

u(0) = g(u), u(1) = h(u) +

m−2∑
k=1

λku(ηk),

where Dα is Caputo’s fractional derivatives, 0 < λk, ηk < 1. Shah et al [19], studied
the Existence of solution to multi point boundary value problem of degree theory in
the form of

Dαx(t) = φ(t, x(t), y(t)), t ∈ I = [0, 1],

Dβy(t) = ψ(t, x(t), y(t)), t ∈ I = [0, 1],

x(0) = g(x), x(1) = δx(η), 0 < η < 1,

y(0) = h(y), y(1) = γy(ξ), 0 < ξ < 1,

In (2016) Shah and Khan [12], also studied the coupled system of nonlinear boundary
value problem for the existence and uniqueness solution given as{

Dαu(t) = f(t, u(t), v(t)), Dβv(t) = g(t, u(t), v(t)) t ∈ I = [0, 1],

λ1u(0)− γ1u(η)− µ1u(1) = φ(u), λ2v(0)− γ2v(η)− µ2v(1) = ψ(v).

. In order to enlarge the class of boundary value problems and to impose less restricted
conditions, one need to search for other sophisticated tools of functional analysis. Isaia
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[10], applied the technique to obtain the existence result for the integral equation
without compactness in the form of

u(t) = ϕ(t, u(t)) +

∫ b

a

ψ(t, s, u(s))ds,

where ϕ : [a, b] × R → R and ψ : [a, b] × [a, b] × R → R is continuous function with
some special growth conditions.
Our purpose in this paper is to prove the existence of solution to the following system
of hybrid differential equation of order ”1 < α < 2”:

Dα[x(t)− f(t, x(t))] = g(t, y(t), Iαy(t)), t ∈ ,
Dα[y(t)− f(t, y(t))] = g(t, x(t), Iαx(t)), t ∈ ,
Dpx(0) = 0, Dpx(1) = δx(η), 0 < η < 1,

Dpy(0) = 0, Dpy(1) = δy(η), for α > 0, where 0 < p < 1.

(1.1)

The proof is rooted on a nonlinear integral equation without compactness under
appropriate assumptions on operators F and G. The hypothesis imposed on operators
F and G are stronger and the result is stronger as well.

2. Background Materials and Lemmas

In this section, we recall some basic definitions, lemmas and notations.

Definition 2.1. The fractional integral of order α ∈ R+ of the function h ∈ L1([a, b],R)
is defined as

Iαh(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s) ds.

provided that right hand side is point wise defined on (0,∞).

Definition 2.2. The Caputo’s fractional order derivative of a function h on the
interval [a, b] is defined by

cDαh(t) =
1

Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s) ds,

provided that right hand side is point wise defined on (0,∞), where n = [α] + 1 and
[α] represents an integer part of α.

Lemma 2.3. The fractional order differential equation of order α > 0 of the form

cDαh(t) = 0, n− 1 < α ≤ n,

has a unique solution of the form h(t) = C0 + C1t + C2t
2 + ... + Cn−1t

n−1, where
Ci ∈ R, i = 0, 1, 2, ..., n− 1.

In view of Lemma (2.3), we can easily obtain the following result
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Lemma 2.4. For x, y ∈ C[0, 1], 0 < α, β ≤ 1, λi 6= µi+νi(i = 1, 2), and λi, µi, νi ∈
R and the function φ(x), ψ(y) : C[0, 1], R→ R, the coupled system of boundary value
problem (1.1) has a solution of the form
x(t) = f(t, x(t)) +

1

δ
(Dαf(1, x(1)))− f(η, x(η)) + Iαh(t) +

1

δ
(Iα−ph(1))− Iαh(η),

y(t) = f(t, y(t)) +
1

δ
(Dαf(1, y(1)))− f(η, y(η)) + Iαh(t) +

1

δ
(Iα−ph(1))− Iαh(η).

(2.1)

In the following, X will be a Banach space and S ⊂ P (X) will be the family of all
its bounded sets.

Definition 2.5. The Kuratowski measure of non-compactness A : S→ R+ is defined
as

A(S) = {inf d > 0 where s ∈ S admits a finite cover by sets of diameter ≤ d}

Definition 2.6. A topological space Xis said to be compact if it is both complete
and totally bounded.

Proposition 2.7. The Kuratowski measure A satisfy the following properties:
(i) A(S) = 0 if and only if S is relatively compact;
(ii) A is semi norm, A(λS) = |λ|A(S), λ ∈ R and A(E1 + E2) ≤ A(E1) +A(E2);
(iii) E1 ⊂ E2 implies A(E1) ≤ A(E2); A(E1UE2) = max{A(E1), A(E2)};
(iv) A(Conv S) = A(S);
(v) A(S̄) = A(S).

Definition 2.8. Let F : Ω −→ X be a continuous bounded map, where Ω ⊂ X.
Then F is k-Lipschitz if there exists λ > 0 such that k(F(A)) ≤ λk(A)for all A ⊂ Ω is
bounded. Further, F will be strict k-contraction if λ < 1.

Definition 2.9. The function F is k-condensing if
k(F(A)) ≤ k(A) for all A ⊂ Ω bounded with k(A) > 0.
In other words, k(F(A)) > k(A) implies k(A)= 0.

The class of all strict k-contractions F : Ω −→ X is denoted by <Ck(Ω) and the
class of all k-condensing maps F : Ω −→ X by Ck(Ω).

Moreover, recall that F : Ω −→ X is Lipschitz if there exists λ > 0 such that
‖F (u) − F (v)‖ ≤ λ‖u − v‖, for all u, v ∈ Ω, and that if λ < 1, then F is a strict
contraction.
For the following results, we refer to [10].

Proposition 2.10. If F : Ω −→ X are k-Lipschitz maps with constants k1 and k2

respectively, then F +G : Ω −→ X are k-Lipschitz with constants k1 + k2.

Proposition 2.11. If F : Ω −→ X is compact then F is k-Lipschitz with constants λ.

Proposition 2.12. If F : Ω −→ X is Lipschitz with constants λ, then F is k-Lipschitz
with same constants λ.
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The following theorem due to Isaia [10], plays important rule for our main result.

Theorem 2.13. If F : X −→ X be k-condensing and

S = {x ∈ X : there exist µ ∈ [0, 1]such that x = µFx}.

If S is a bounded set in X, so there exists r > 0 such that S ⊂ Br(0), then the degree

D(I − µF, Br(0), 0) = 1, for all µ ∈ [0, 1].

Consequently, F has at least one fixed point and the set of fixed points of F lies in
Br(0).

Now denoting by X = C([0, 1],R) the Banach space of all continuous functions
from H = C[0, 1] −→ R with the topological norm ‖x‖= max{|x(t)|: t ∈ [0, 1]}. Then
the product space X × Y defined by X × Y = {(x, y) : x ∈ X, y ∈ Y }, is a Banach
space under the norm ‖(x, y)‖= max{‖x‖, ‖y‖}. We list the following assumptions:

(A1) There exist constants K ′,K ′′ ∈ [0, 1) such that for u, v, x, x̄ ∈ C(H,R),
|f(u, x)− f(u, x̄)|≤ K ′‖x− x̄‖ , Dp|[f(1, x)− f(1, x̄)]|≤ 1

δK
′′‖x− x̄‖.

|g(v, x)− g(v, x̄)|≤ K ′‖x− x̄‖ , Dp|[g(1, x)− g(1, x̄)]|≤ 1
δK
′′‖x− x̄‖.

(A2) There exist constants Cφ, Cψ, Mφ andMψ > 0 such that for (x, y) ∈ C(H,R),
|φ(u)|≤ Cφ‖x‖q1+Mφ , |ψ(v)|≤ Cψ‖y‖q1+Mψ.

(A3) There exist constants Cf , Cg and Mf ,Mg such that for t ∈ [0, 1], and (x, y) ∈
C(H,R),
|f(t, x(s), y(s))|≤ Cf1‖x‖q2+Cf2‖y‖q2+Mf ,
|g(t, x(s), y(s))|≤ Cg1‖x‖q2+Cg2‖y‖q2+Mg.

3. Existence and uniqueness result of the system

For the existence of solution of the coupled system (1.1), it is enough to show that
the integral equation (2.1) of the system (1.1) has at least one solution (x, y) ∈ X×Y .
Define the following operators F,G, T : X × Y −→ X × Y by

F (x, y)(t) =
(
F1x(t), F2y(t)

)
, G(x, y)(t) = (G1x(t), G2y(t)).

and

T (x, y) = F (x, y) +G(x, y).

Where

F1x(t) = f(t, x(t)) + 1
δ (Dαf(1, x(1))− f(η, x(η)),

F2y(t) = f(t, y(t)) + 1
δ (Dαf(1, y(1))− f(η, y(η)),

G1x(t) = 1
Γ(α)

∫ t
0
(t− s)α−1f(s, x(s), Iαx(s))ds

+ 1
δ

1
Γ(α−p)

∫ 1

0
(1− s)α−p−1f(s, x(s), Iαx(s))ds

− 1
Γ(α)

∫ η
0

(η − s)α−1f(s, x(s), Iαx(s))ds,
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G2y(t) = 1
Γ(β)

∫ t
0
(t− s)β−1g(s, y(s), Iβy(s))ds

+ 1
δ

1
Γ(β−p)

∫ 1

0
(1− s)β−p−1g(s, y(s), Iβy(s))ds

− 1
Γ(β)

∫ η
0

(η − s)β−1g(s, y(s), Iβy(s))ds.

The continuity of f, g shows that the operator T is well define. The integral equa-
tion (2.1) can be written as an operator equation

(x, y) = T (x, y) = F (x, y) +G(x, y), (3.1)

and has a fixed point of the operator equation (3.1) are solution of the integral equa-
tion (2.1).

Lemma 3.1. Under the Assumption A1 and A2, the operator F : X × Y −→ X × Y
is Lipschitz with constant K and satisfied the growth condition

‖F (x, y)‖ ≤ C‖(x, y)‖q1 +M. (3.2)

Proof. For (x, y), (x̄, ȳ) ∈ X × Y , such that

|F1x− F1x̄| ≤ |f(t, x(t)− f(t, x̄(t))|

+ 1
δ |(D

αf(1, x(1))−Dαf(1, x̄(1)))| − |f(η, x(η)− η, x̄(η))|.
Using A1,

|F1x− F1x̄| ≤ k′|x− x̄|+
1

δ
δk′′|x− x̄| − k′′′|x− x̄|.

|F1x− F1x̄| ≤ k1|x− x̄|. (3.3)

Where k1 = max{k′, k′′, k′′′}. Hence F1 is Lipschitz with constant k1. Similarly

|F2y − F2ȳ| ≤ k2|y − ȳ|. (3.4)

Which implies F2 is Lipschitz with constant k2, so we have

‖F (x, y)− F (x̄, ȳ)‖ ≤ max

(
k1, k2

)
‖(x, y)− (x̄, ȳ)‖.

max(k1, k2) = K,

‖F (x, y)− F (x̄, ȳ)‖ ≤ K‖(x, y)− (x̄, ȳ)‖,
hence by proposition (2.10) F is Lipschitz with constant K. So F is α − Lipschitz
with constant K. For the growth condition, using the assumption (A2), we obtain

|F1(x)|= |φ(u)|≤ Cφ‖x‖q1+Mφ,

|F2(y)|= |ψ(v)|≤ Cψ‖y‖q1+Mψ.

Hence we get that

‖F (x, y)‖≤ C‖(x, y)‖q1+M,

where C = max(Cφ, Cψ) and M = max(Mφ,Mψ). �
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Lemma 3.2. The operator G : X × Y −→ X × Y is compact. Consequently G is
Lipschitz with constant zero.

Proof. First, we prove the continuity of G. Chose a bounded subset

Es = {(x, y) ∈ X × Y : ‖(x, y)‖≤ E} ⊂ X × Y
and consider a sequence {kn = (xn, yn)} ∈ Es, such that kn −→ k = (x, y) as n −→∞
in Es we need to show that ‖Gkn − Gk‖−→ 0 as n −→ ∞. From the continuity of
f(t, x, y), it follows that f(s, xn, yn) −→ f(s, x, y), as n −→ ∞. In view of (A3), we
obtained the following relations:

(t− s)α−1‖f(s, xn(s), yn(s))− f(s, x(s), y(s))‖≤ (t− s)α−1[C1
fR+ C2

f +Mf ],

(1− s)α−p−1‖f(s, xn(s), yn(s))− f(s, x(s), y(s))‖≤ (1− s)α−p−1[C1
fR+ C2

f +Mf ],

(η − s)α−1‖f(s, xn(s), yn(s))− f(s, x(s), y(s))‖≤ (η − s)α−1[C1
fR+ C2

f +Mf ].

Which implies that each term on the left is integrable, so by Lebesgue dominated
convergent theorem, we have∫ t

0

(t− s)α−1|f(s, xn(s), Yn(s))− f(s, x(s), y(s))|ds −→ 0, as n −→∞

and∫ 1

0

(1− s)α−p−1|f(s, xn(s), Yn(s))− f(s, x(s), y(s))|ds −→ 0, as n −→∞,

∫ η

0

(η − s)α−1|f(s, xn(s), Yn(s))− f(s, x(s), y(s))|ds −→ 0, as n −→∞.

Hence, ‖G1(xn, yn)−G1(x, y)‖−→ 0 as n −→∞. Similarly, we obtain ‖G2(xn, yn)−
G2(x, y)‖−→ 0 as n −→ ∞. It follow that ‖G(xn, yn) − G(x, y)‖−→ 0 as n −→ ∞.
Which implies the continuity of the operator G. Moreover, G satisfies the following
growth conditions

‖G(x, y)‖≤ 4(‖(x, y)‖q2+M∗). (3.5)

For the growth condition, we note that

|G1(x, y)(t)|≤ 1
Γ(α)

∫ t
0
(t− s)α−1|f(s, x(s), y(s))|ds

+ 1
δ

1
Γ(α−p)

∫ 1

0
(1− s)α−p−1|f(s, x(s), y(s))|ds

− 1
Γ(α)

∫ η
0

(η − s)α−1|f(s, x(s), y(s))|ds,

‖G1(x, y)(t)‖ ≤ |t
α
2 − tα1 |

Γ(α+ 1)
Cf‖x‖q2+Cf‖y‖q2+Mf .

Similarly, we obtain

‖G2(x, y)(t)‖ ≤ |t
α
2 − tα1 |

Γ(α+ 1)
Cg‖x‖q2+Cg‖y‖q2+Mg.
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So we get the growth condition (3.5) as

‖G(x, y)(t)‖ ≤ 4(‖(x, y)‖q2+M∗),

where 4 = max(Cf , Cg)
|tα2−t

α
1 |

Γ(α+1) and M∗ = max(Mf ,Mg).

In order to prove the compactness of G, we consider a bounded set M ⊂ Es ⊂ X ×Y
and we will show that G(M) is relatively compact in X ×Y . For any kn = (xn, yn) ∈
M ⊂ Es, the growth condition (3.5) implies that

‖G(x, y)(t)‖ ≤ 4(‖(x, y)‖q2+M∗)

That is, G(M)is uniformly bounded. For equi-continuity of G, choose 0 ≤ t ≤ τ ≤ 1.
Then we have

‖G1(xn, yn)(t)−G1(xn, yn)(τ)‖=∣∣ 1
Γ(α)

∫ t
0
[(t− s)α−1 − (τ − s)α−1]f(s, xn(s), yn(s))ds

+ 1
Γ(α)

∫ τ
t

(τ − s)α−1f(s, xn(s), yn(s))ds
∣∣

≤ 1
Γ(α)

∫ t
0
[(t− s)α−1 − (τ − s)α−1]|f(s, xn(s), yn(s))|ds

+ 1
Γ(α)

∫ τ
t

(τ − s)α−1|f(s, xn(s), yn(s))|ds

≤ 1
Γ(α+1)

[
tα − τα + (τ − t)α + (τ − t)α

](
Cf1‖x‖q2+Cf2‖y‖q2+Mf

)
,

‖G1(xn, yn)(t)−G1(xn, yn)(τ)‖≤(
Cf1‖x‖q2+Cf2‖y‖q2+Mf

Γ(α+1)

)[
tα − τα + (τ − t)α + (τ − t)α

]
.

Thus

‖G1(xn, yn)(t)−G1(xn, yn)(τ)‖≤(
(Cf1+Cf2)‖E‖q2+Mf

Γ(α+1)

)[
tα − τα + (τ − t)α + (τ − t)α

]
.

(3.6)

Similarly, we obtain

‖G2(xn, yn)(t)−G2(xn, yn)(τ)‖≤(
(Cg1+Cg2)‖E‖q2+Mg

Γ(β+1)

)[
tβ − τβ + (τ − t)β + (τ − t)β

]
.

(3.7)

From (3.6) and (3.7), we follow that

‖G1(xn, yn)(t)−G1(xn, yn)(τ)‖−→ 0, ‖G2(xn, yn)(t)−G2(xn, yn)(τ)‖−→ 0.
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as t −→ τ , which implies that G(x, y) is equi-continues.
For every (x, y) ∈ M , the set G(M) ⊂ X × Y satisfies the hypothesis of Arzela-
Ascoli theorem, so G(M) is relatively compact in X×Y . Hence G is k-Lipschitz with
constant 0. �

Theorem 3.3. Assume the assumption (A1)− (A3) are satisfied. Then the BV P (1)
has at least one solution (x, y) ∈ X ×Y and the set of solutions is bounded in X ×Y .

Proof. As we proved in Lemma (3.1), F is k-Lipschitz with constant K. and by
Lemma (3.2), G is k-Lipschitz with constant 0. Consequently T is k-Lipschitz with
constant K. Hence T is strict k-contraction with constant K. Since K ∈ [0, 1), so T
is k-condensing.

Now consider the following set

S = {(x, y) ∈ X × Y : there exist λ ∈ [0, 1], such that (x, y) = λT (x, y).

We need to prove S is bounded. For (x, y) ∈ S, we have

(x, y) = λT (x, y) = λ(F (x, y) +G(x, y)),

which implies that

‖x‖ = λ[‖F1(x)‖+‖G1(x)‖],

‖x‖ ≤ λ[Cφ‖x‖q1+Mφ + Cf1‖x‖q2+Cf2‖y‖q2+Mf ]. (3.8)

Similarly we can prove that

‖y‖ ≤ λ[Cψ‖y‖q1+Mψ + Cg1‖x‖q2+Cg2‖y‖q2+Mg]. (3.9)

The inequalities (3.8) and (3.9) combine with 0 ≤ q1, q2 < 1 show that S is bounded
in X × Y , on other words if we dividing (3.8) by ‖x‖ and letting ‖x‖−→ ∞ we write
as

1 ≤ lim
‖x‖→∞

λ

(
Cφ

‖x‖1−q1
+

Cf1

‖x‖1−q2
+
‖y‖q2+Mφ +Mf

‖x‖1−q1

)
= 0. (3.10)

Which is a contradiction. A similar contradiction aries. when we divide (3.9) by
‖y‖ and let lim‖y‖→∞ . Thus T has at least one fixed point, which corresponds to a
solution of (1.1). The set of the solution is bounded. �

Example 3.4.

D1.5[x(t)− f(t, x(t))] = g(t, y(t), I1.5y(t)), t ∈ ,
D1.5[y(t)− f(t, y(t))] = g(t, x(t), I1.5x(t)), t ∈ ,

D0.5x(0) = 0, D0.5x(1) =
1

2
x(

1

2
),

D0.5y(0) = 0, D0.5y(1) =
1

2
y(

1

2
),

(3.11)

where f(t, x(t)) = t2 sin x(t)
50+t2 , g(t, x(t), I1.5x(t)) = exp(−t)

50

[
cosx(t)+ I1.5 cosx(t)

]
. Ob-

viously the above functions satisfy the assumptions from (A1) − (A5). Also the
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auschwitz conditions of Lemma 3.1 are satisfied. Further q1 = q2 = 1 and Cf1 =
Cf2 = 1

50 , Cg1 = Cg2 = 1
50 ,Mf = 0,Mg = 0. Now by simple calculation one can

verify that all the conditions of Theorem 3.3 are satisfied so the given problem (3.11)
has at least one solution. Also one can easily obtain that the solution set is bounded.

4. Conclusion

By the use of topological degree theory, we have developed sufficient conditions
for the existence of at least one solution to a coupled system of nonlinear hybrid
differential equations with fractional order. The mentioned conditions guarantee the
existence of solutions the considered problem with boundary conditions. Finally by
suitable examples we have verified the established results.
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