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Abstract Using Taylor’s series we propose a modified secant relation to get a more accurate
approximation of the second curvature of the objective function. Then, based on this

modified secant relation we present a new BFGS method for solving unconstrained

optimization problems. The proposed method make use of both gradient and func-
tion values while the usual secant relation uses only gradient values. Under appro-

priate conditions, we show that the proposed method is globally convergent without

needing convexity assumption on the objective function. Comparative results show
computational efficiency of the proposed method in the sense of the Dolan-Moré

performance profiles.
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1. Introduction

Consider the unconstrained nonlinear optimization problem

min f(x), x ∈ Rn, (1.1)

where, f : Rn → R, is twice continuously differentiable.

Notation 1. Throughout our work, we consider the following notations:

fk = f(xk), sk = xk+1−xk, gk = ∇f(xk), yk = gk+1− gk, Gk+1 = ∇2f(xk+1).

Also, ‖.‖ is the Euclidean norm.

As we all know, Newton method based on the second order Taylor’s series approx-
imation involves computation of the Hessian matrix of second order derivatives at
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each iteration. In practice it is often preferred to approximate the Hessian matrix
(or sometimes its inverse) with a symmetric positive definite matrix through some
effective procedure instead of its exact computation. This idea of approximating the
Hessian with a symmetric positive definite matrix was first introduced by Davidon [7].
The class of methods that approximates Newton method by utilizing some symmetric
positive definite approximation of the Hessian or the inverse Hessian instead of the
corresponding exact value is termed as quasi-Newton methods.
The quasi-Newton methods possess a number of important theoretical properties (see
[4], [5], [8], [9], [22] ), for example, quadratic termination, invariance under non-
singular affine transformations, heredity of positive-definite updates, and generating
identical iterate points with exact line searches (see [11]), locally and superlinearly
convergence under mild conditions (see [8], [9]).

These methods generate a sequence {xk} by the iterative scheme

xk+1 = xk + αkdk, (1.2)

where, αk > 0 is a step length and dk is the search direction obtained by solving
Bkdk = −gk, where Bk is an approximation of the Hessian matrix of f at xk.

A famous class of quasi-Newton methods is the Broyden family [2] in which the
Hessian updates are defined by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
+ µwkw

T
k , wk = (sTkBksk)1/2[

yk
sTk yk

− Bksk
sTkBksk

],

where µ is a scalar and Bk+1 satisfies the following standard secant relation:

Bk+1sk = yk. (1.3)

The popular BFGS, DFP and SR1 updates are obtained by setting µ = 0, µ = 1 and
µ = 1/(1− sTkBksk/s

T
k yk), respectively.

From the numerical experiment on the quasi-Newton methods, it is proved that the
BFGS method is the most successful one among all the quasi-Newton methods. But
the global convergence for general function f is still open even if it is convergent (global
and superlinear) for convex minimization [1]-[3], [10]. Hence, it is very interesting to
investigate whether there is any new quasi-Newton method that not only possess
global convergence but also superior than the BFGS method from the computation
point of view.
When the fuction f is convex, global convergence of the BFGS method’s has been
studied by some authors (see [3, 4, 17, 22, 24]). Dai [6] constructed an example to
show that the standard BFGS method may fail for non-convex functions with inexact
line search. Mascarenhas [20] showed standard BFGS methods may not be convergent
even with precise line searching. To overcome this problem, Li and Fukushima [18, 19]
made a modification on the standard BFGS method and developed a modified BFGS
method that is globally convergent without a convexity assumption on the objective
function f .
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The usual secant relation employs only the gradients and the available function values
are ignored. To overcome this problem, several researchers have modified the usual
secant relation (1.3) to make full use of both the gradient and function values (see
[25]-[29]).

Zhang and Xu [29], using Taylor’s series, modified usual secant equation (1.3) as
follows:

Bk+1sk = yk, yk = yk +
ϑk
‖sk‖2

sk, (1.4)

with

ϑk = 6(fk − fk+1) + 3(gk + gk+1)T sk. (1.5)

A merit of the new modified secant method can be seen from the following theorem
[29].

Theorem 1.1. Assume that the functions f(x) are smooth enough and yk is de-
fined by (1.4). If ‖sk‖ is sufficiently small, then we have

sTk (Gk+1sk − yk) = O(‖ sk ‖4),

sTk (Gk+1sk − yk) = O(‖ sk ‖3).

Resently, Yabe and Takano [27] extended the modified secant relation (1.4) by mul-
tiplying a fixed parameter ρ ≥ 0, as follows:

Bk+1sk = zk, zk = yk + ρ
ϑk
‖sk‖2

sk,

where ϑk is given by (1.5).

Theorem 1.1, demonstrate if ‖sk‖ > 1, the standard secant relation is expected to
be more accurate than the modified secant relation (1.4). In this case, the use of
(1.4)) does not seem to be suitable. To overcome these problems, Peyghami et al.
[21] modified (1.4) as follows:

Bk+1sk = wk, wk = yk + ρk
ϑk
‖sk‖2

sk, (1.6)

with

ρk = min(ρmax,
a

b+ ‖sk‖m
), (1.7)

where a, b, ρmax and m is a nonnegative integer.

Here, we construct alternative estimates of the secant relation (1.3), to get a more
accurate approximation of the second curvature of the objective function. Then, we
make use of the new secant relation in a BFGS updating formula. This work is or-
ganized as follows: In section 2, we employ Taylor’s series to derive an alternative
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secant relation. In section 3, we investigate the global convergence of the proposed
method. Finally, in section 4, we report some numerical results.

2. Proposed modified quasi-Newton method

Consider the following auxiliary function

fk(x) = f(x) +
rk
2

(x− xk)T (x− xk). (2.1)

Obviously the functions fk and f have the same value in xk.

By using (2.1), we have

Bk+sk = y∗k, y
∗
k = yk + rksk. (2.2)

Clearly, different choices of the rk in (2.2) define a variety of secant relation. Here,
we introduce a reasonable rk, that leads a new secant relation.

Using the Taylor formula for the functions f(x), we obtain

fk ' fk+1 − gTk+1sk + 1
2
sTkGk+1sk − 1

6

∑n
i,j,l=1

∂3fk+1

∂xi∂xj∂xl s
i
ks

j
ks

l
k

+ 1
24

∑n
i,j,k,l=1

∂4fk+1

∂xi∂xj∂xk∂xl s
i
ks

j
ks

k
ks

l
k,

(2.3)

sTk gk ' sTk gk+1 − sTkGk+1sk + 1
2

∑n
i,j,l=1

∂3fk+1

∂xi∂xj∂xl s
isjsl

− 1
6

∑n
i,j,d,l=1

∂4fk+1

∂xi∂xj∂xd∂xl s
i
ks

j
ks

d
ks

l
k,

(2.4)

sTkGksk ' sTkGk+1sk −
n∑

i,j,l=1

∂3fk+1

∂xi∂xj∂xl
siks

j
ks

l
k +

1

2

n∑
i,j,d,l=1

∂4fk+1

∂xi∂xj∂xd∂xl
∂siks

j
ks

d
ks

l
k. (2.5)

Cancellation of
∑n

i,j,l=1

∂3fk+1

∂xi∂xj∂xl s
i
ks

j
ks

l
k and

∑n
i,j,d,l=1

∂4fk+1

∂xi∂xj∂xd∂xl ∂s
i
ks

j
ks

d
ks

l
k, from (2.3),

(2.4) and (2.5) yields,

sTkGk+1sk ' 12(fk − fk+1) + 6(gk + gk+1)T sk + sTkGksk. (2.6)

Since Bk+1 approximate Gk+1 = ∇2f(xk+1), we have

sTkBk+1sk = sTk yk + 12(fk − fk+1) + 7gTk sk + 5gTk+1sk + sTkBksk. (2.7)

On the other hand, multiplying both sides of (2.2) by sk, we get

sTkBk+1sk = sTk yk + rks
T
k sk. (2.8)

The relation (2.7), together with (2.8), result in

rk =
θk
‖sk‖2

, θk = 12(fk − fk+1) + 7gTk sk + 5gTk+1sk + sTkBksk. (2.9)

Now, Based on the above observation, we can modify the secant relation (1.3) as follows

Bk+1sk = y∗k, (2.10)
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with

y∗k = yk +
θk
‖sk‖2

sk, θk = 12(fk − fk+1) + 7gTk sk + 5gTk+1sk + sTkBksk. (2.11)

A merit of the new modified secant method is revealed by the following result.

Theorem 2.1. Assume that the functions f is smooth enough and y∗k is defined by (2.11).
If ‖sk‖ is sufficiently small, then we have

sTk (Gk+1sk − y∗k) = O(‖ sk ‖5),

sTk (Gk+1sk − yk) = O(‖ sk ‖4),

and

sTk (Gk+1sk − yk) = O(‖ sk ‖3).

Proof. The result follows immediately from (2.3), (2.4) and (2.5) (for details, see Theorem
2.1 of [25]. � �

Theorem 2.1 implies that the quantity sTk y
∗
k generated by the modified secant method ap-

proximates the second-order curvature sTkGk+1sk with a higher accuracy respect to quantity
sTk yk and sTk yk.

Obviously, determine vk by (2.11) require expensive computations at each iteration (be-
cause of the matrix-vector products), especially for large problems. We are going to propose
an effective approach to to reduce the level of computation to determining vk.

We know direction search computed by

dk = −B−1
k gk. (2.12)

On the other hand, using (1.2), we get

sk = αkdk. (2.13)

From (2.12) and (2.13), we obtain

Bksk = −αkgk. (2.14)

Also, we know that Bk satisfies

Bksk−1 = yk−1. (2.15)

Using (2.14) and (2.15), the relation (2.11) can be written as

y∗k = yk +
θk
‖sk‖2

sk, θk = 12(fk − fk+1) + 7gTk sk + 5gTk+1sk − α2
kd

T
k gk. (2.16)

Hence, we can be written as the secant relation (2.10) as follows:

Bk+1sk = y∗k, y
∗
k = yk + ρk

θk
‖sk‖2

sk, (2.17)

where ρk and θk are given by (1.7) and (2.16) respectively.

Clearly, this relation is considerably less expensive than that given in (2.10), especially
for large scale problems.

For general functions, if Bk is not positive definite dk may not be a descent direction. To
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overcome this, we using the idea in [18] and update Bk+1 by the following rule:

Bk+1 =

{
Bk − Bksks

T
k Bk

sT
k
Bksk

+
y∗
ky∗

k
T

sT
k
y∗
k

,
sTk y∗

k
‖sk‖2

≥ δ,
Bk, otherwise.

(2.18)

An attractive property of this update for Bk is that

y∗k
T sk > 0, (2.19)

which guarantees the positive definiteness of matrix Bk.

We can now give a new BFGS algorithm using our new secant relation as follows.

Algorithm 1: A modified BFGS method.
Step 1: Give ε as a tolerance for convergence, σ1 ∈ (0, 1), σ2 ∈ (σ1, 1), a starting point
x0 ∈ Rn, and a positive definite matrix B0. Set k = 0.

Step 2: If ‖gk‖ < ε then stop.

Step 3: Compute a search direction dk: Solve Bkdk = −gk.

Step 4: Compute αk by using the following Wolfe conditions:

f(xk + αkdk) ≤ f(xk) + σ1αkg
T
k dk, (2.20)

and

g(xk + αkdk)T dk ≥ σ2g(xk)T dk. (2.21)

Step 5: Set xk+1 = xk + αkdk. Compute y∗k by (2.17). Update Bk+1 by (2.18).

Step 6: Set k = k + 1 and go to Step 2.

Next, we will investigate the global and asymptotic superlinear convergence of the proposed
algorithm.

3. Convergence analysis

In order to establish the global convergence of the Algorithm 1, we need some commonly
used assumptions.

Assumption A. The level set D = {x | f(x) ≤ f(x0)} is bounded, where x0 is the starting
point of Algorithm 1.

Assumption B. In an open set N containing D, there exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L ‖ x− y ‖, ∀x, y ∈ N.

It is clear that assumptions A and B imply that there exists a positive constant γ such that

‖ g(x) ‖≤ γ, ∀x ∈ D. (3.1)
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From Assumption A and the Wolfe conditions, {f(xk)} is a non-increasing sequence, which
ensures {xk} ⊂ D and the existence of x∗ such that

lim
k→∞

f(xk) = f(x∗). (3.2)

To establish convergence of Algorithm 1, we first provide some lemmas.

Lemma 3.1. Let f satisfy assumptions A and B, and {xk} be generated by Algorithm
1 and there exist constants a1 and a2 such that,

‖Bksk‖ ≤ a1‖sk‖ and sTkBksk ≥ a2‖sk‖2, (3.3)

for infinitely k, then we have

lim inf
k→∞

g(xk) = 0. (3.4)

Proof. From (3.3) and the relation gk = −Bkdk we have

dTkBkdk ≥ a2‖dk‖2, a2‖dk‖ ≤ ‖gk‖ ≤ a1‖dk‖. (3.5)

Let Λ be the set of indices k such that (3.5) holds. By using (2.21) and Assumption B, we
have

Lαk‖dk‖2 ≥ (gk+1 − gk)T dk ≥ (1− σ2)gTk dk. (3.6)

This implies that, for any k ∈ Λ,

αk ≥
(1− δ)gTk dk
L‖dk‖2

=
(1− δ)dTkBkdk

L‖dk‖2
=

(1− δ)a2

L
. (3.7)

On the other hand, from (3.2), we obtain

∞∑
k=1

(fk − fk+1) = lim
N→∞

N∑
k=1

(fk − fk+1) = lim
N→∞

(f(x1)− fN ) = f(x1)− f∗,

which yields
∞∑

k=1

(fk − fk+1) <∞,

Using (2.20), we get
∞∑

k=1

αkg
T
k dk <∞,

which ensures
lim
k→∞

αkg
T
k dk = 0,

this together with (3.7) lead to

lim
k∈Λ,k→∞

dTkBkdk = lim
k∈Λ,k→∞

−gTk dk = 0,

which along with (3.5), yields (3.4). �

Lemma 3.2. (Theorem 2.1 of [3]) Suppose that there are positive constants m and M such
that for all k ≥ 0

sTk y
∗
k

‖sk‖2
≥ m and

‖y∗k‖2

sTk y
∗
k

≤M. (3.8)

Then, there exist constants a1 and a2 such that for any positive integer t (3.3) holds for at
least [ t

2
] values of k ∈ {1, 2, ..., t}.
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Now, we prove the global convergence for Algorithm 1.

Theorem 3.1. Let f satisfies in assumption A and B, and {xk} be generated by Algo-
rithm 1. Then, we have

lim inf
k→∞

g(xk) = 0. (3.9)

Proof. In view of Lemma 3.1, sufficiently show that (3.3) holds for infinitely k.

Let K = {k| sTk y∗
k

‖sk‖2
≥ δ}. If K is a finite set, then from (2.18) Bk, is a constant matrix after

some finite iterations, clearly (3.3) holds for all large k.

Now, suppose K is a infinite set, then we have

sTk y
∗
k ≥ δ‖sk‖2, ∀k ∈ K. (3.10)

By the definitions of y∗k and Assumption B, it is easy to see that

‖y∗k‖2

sTk y
∗
k

≤M.

where M > 0 is a constant. Applying Lemma 3.2 to the subsequence {Bk}k∈K, there exist,
constants a1 > 0 and a2 > 0 such that (3.3) holds for infinitely many k. Then, Lemma 3.1
completes the proof. �

Figure 1. Total number of iterations performance profiles for the Algorithms.
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Figure 2. Total number of function evaluations performance profiles
for the Algorithms.

4. Numerical results

We compare the performance of the following four methods on some unconstrained opti-
mization problems:

M1: proposed method (Algorithm 1) with a = b = ρmax = 1, m = 10.
M2: the modified BFGS of Peyghami et al. using (1.6) [21] with a = b = ρmax = 1, m = 10.
M3: the modified BFGS method of Zhang and Xu using (1.4) [29].
M4:the usual BFGS method using (1.3) [3].

We have tested all the considered algorithms on 120 test problems from CUTEr library
[16]. A summary of these problems are given in Table 1 of [8]. All codes were written in
Matlab 2012 and run on a PC with CPU Intel(R) Core(TM) i5-4200 3.6 GHz, 4 GB of RAM
memory and Centos 6.2 server Linux operating system.

In the four algorithms, the initial matrix is set to be the identity matrix, and the step
length αk was computed satisfying the Wolfe conditions, with σ1 = 0.01, σ2 = 0.9 and
ε = 10−6. In Algorithm 1 we set δ = 10−6.

Tables 1-3 in the appendix list estimation errors of these algorithms, where f∗ stand for
optimal value objective function.
We used the performance profiles of Dolan and Moŕe (see [12]) to evaluate performance
of these two algorithms with respect to the number of iterations and the total number of
function and gradient evaluations computed as

Nf + nNg,
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where Nf and Ng, respectively denote the number of function and gradient evaluations (note
that to account for the higher cost of Ng, as compared to Nf , the former is multiplied by n).

Figures 1 and 2 demonstrate the results of the comparisons. From these figures, it is clearly
observed that the proposed method (M1) is the most efficient for solving these 120 test
problems.

5. Conclusion

We propose a modified secant relation to get a more accurate approximation of the sec-
ond curvature of the objective function. Then, based on the proposed secant relation, we
presented a modified BFGS for solving unconstrained optimization problem. The global
convergence of all the proposed methods was established, under suitable assumptions. Nu-
merical results on the collection of problems from the CUTEr library showed the proposed
method to be more efficient as compared to several proposed BFGS methods in the literature.

Acknowledgements

We would like to thank the referees and the associate editor, whose very helpful sugges-
tions led to much improvement of this paper.

References

[1] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math.

Comp., 19 (1965), 577–593.
[2] C. G. Broyden, The convergence of a class of double rank minimization algorithms-Part

2: The new algorithm, J. Inst. Math. Appl., 6 (1970), 222–231.
[3] R. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application

to unconstrained minimization, SIAM J. Numerical Anal., 26 (1989), 727–739.

[4] R. Byrd, J. Nocedal, and Y. Yuan, Global convergence of a class of quasi-Newton methods
on convex problems, SIAM J. Numer. Analysis, 24 (1987), 1171–1189.

[5] A. R. Conn, N. Gould, and Ph. L. Toint, Convergence of quasi-Newton matrices generated

by the symmetric rank one update, Math. Programming, 50 (1991), 177–195.
[6] Y. Dai, Convergence properties of the BFGS algorithm, SIAM J. Optim., 13 (2003),

693–701.

[7] W. C. Davidon, Variable metric methods for minimization, Argonne National Labs Re-
port, ANL-5990.

[8] R. Dehghani, N. Bidabadi, and M. M. Hosseini, A new modied BFGS method for un-
constrained optimization problems, Computational and Applied Mathematics, 37 (2018),
5113-5125.

[9] J. E. Dennis and J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM
Review, 19 (1977), 46–89.

[10] J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization and

nonlinear equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
[11] L. C. W. Dixon, Quasi-Newton algorithms generate identical points, Math. Programming,

2 (1972), 383–387.
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Table 1. Test results for the two algorithms.

No ‖fk − f∗‖2
M1 M2 M3 M4

1 7.89e-011 4.86e-009 3.48e-009 5.23e-005
2 9.90e-009 1.79e-006 2.09e-004 8.23e-005
3 3.46e-011 4.97e-011 7.09e-011 8.23e-005
4 2.35e-013 4.40e-011 4.48e-011 5.21e-006
5 3.17e-011 3.27e-011 3.27e-011 5.23e-009
6 4.11e-009 4.11e-009 4.11e-009 4.11e-007
7 5.64e-009 5.64e-009 5.64e-009 5.64e-009
8 1.26e-006 1.96e-0036 2.10e-006 68.23e-005
9 4.09e-009 6.95e-09 6.95e-009 7.23e-007
10 3.99e-005 1.09e-006 9.02e-006 9.02e-006
11 1.54e-004 1.54e-004 1.54e-004 1.54e-004
12 4.90e-009 9.74e-006 9.02e-006 9.21e-005
13 2.01e-002 2.01e-002 2.01e-002 2.01e-002
14 5.93e-008 2.18e-007 2.18e-007 3.25e-003
15 5.64e-009 5.64e-009 5.64e-009 5.64e-009
16 1.66e-011 2.96e-009 2.95e-009 3.93e-002
17 9.61e-011 6.35e-011 5.29e-009 5.23e-005
18 2.05e-008 6.68e-008 6.68e-008 8.23e-006
19 2.18e-010 2.15e-007 2.15e-007 8.23e-005
20 2.40e-011 2.32e-006 2.84e-009 3.23e-003
21 2.42e-011 3.45e-011 3.62e-010 3.57e-010
22 1.65e-008 6.34e-008 6.34e-008 5.21e-002
23 2.43e-011 4.42e-010 4.42e-010 4.64e-007
24 8.54e-011 4.16e-010 1.28e-010 68.23e-006
25 6.57e-011 4.63e-011 8.32e-011 8.22e-009
26 3.55e-008 1.39e-007 1.39e-007 6.02e-006
27 2.81e-011 1.93e-011 1.93e-011 3.54e-009
28 3.96e-010 1.62e-009 1.62e-009 5.09e-007
29 2.01e-010 2.01e-010 2.01e-010 2.01e-010
30 5.33e-009 2.18e-006 2.18e-006 3.25e-005
31 2.01e-006 2.01e-006 2.01e-006 3.23e-003
32 1.45e-011 1.45e-011 1.45e-011 2.57e-010
33 3.57e-008 3.75e-008 3.81e-008 3.89e-008
34 6.56e-011 6.49e-010 6.50e-010 6.94e-007
35 8.54e-011 4.16e-010 1.28e-009 8.23e-003
36 6.57e-011 4.63e-011 8.32e-011 8.22e-003
37 3.55e-008 1.39e-007 1.39e-007 6.02e-007
38 2.71e-011 1.33e-011 1.93e-011 3.24e-006
39 3.66e-010 1.65e-009 1.65e-009 5.08e-009
40 8.01e-011 8.01e-011 8.01e-011 2.01e-010
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Table 2. Test results for the two algorithms.

No ‖fk − f∗‖2
M1 M2 M3 M4

41 3.21e-002 3.21e-002 3.21e-002 2.01e-002
42 1.93e-008 1.18e-007 2.28e-007 3.15e-003
43 5.64e-009 5.64e-009 5.64e-009 5.64e-009
44 6.16e-011 5.96e-009 5.35e-009 2.13e-009
45 2.31e-011 3.15e-011 3.15e-009 7.51e-009
46 3.21e-008 6.18e-008 6.18e-008 6.26e-005
47 5.16e-010 7.15e-011 7.15e-011 8.29e-005
48 2.10e-010 2.12e-009 2.14e-009 2.13e-008
49 2.12e-011 8.41e-011 8.61e-010 9.97e-010
50 1.23e-008 2.33e-008 2.33e-008 3.21e-006
51 3.93e-011 9.12e-010 8.42e-010 5.24e-007
52 8.54e-011 4.16e-011 1.28e-011 8.23e-009
53 9.19e-011 8.86e-011 8.48e-010 6.23e-010
54 4.34e-011 5.45e-011 5.45e-011 6.87e-010
55 2.57e-008 1.75e-008 5.31e-008 2.29e-008
56 3.16e-011 6.89e-010 8.90e-010 5.34e-007
57 2.34e-011 3.16e-010 6.28e-006 8.23e-010
58 9.57e-011 9.63e-011 9.32e-011 8.12e-009
59 1.58e-008 2.32e-008 2.32e-008 3.52e-007
60 2.71e-010 1.33e-010 1.93e-010 2.14e-006
61 7.66e-010 3.65e-009 6.65e-009 5.08e-009
62 5.01e-011 3.01e-011 3.01e-011 6.01e-011
63 2.90e-009 3.79e-009 5.09e-009 7.23e-010
64 1.46e-011 2.97e-011 8.09e-011 9.23e-005
65 2.35e-010 4.40e-010 4.48e-010 5.13e-006
66 3.37e-009 3.97e-010 3.97e-010 6.83e-009
67 2.11e-003 1.11e-003 1.11e-003 1.11e-003
68 5.64e-009 5.64e-009 5.64e-009 5.64e-009
69 1.26e-008 1.96e-003 2.10e-006 68.23e-005
70 4.09e-009 6.95e-09 6.95e-009 7.23e-006
71 2.29e-011 3.09e-011 2.02e-006 7.06e-006
72 3.14e-004 3.52e-004 3.52e-004 3.52e-004
73 4.90e-006 9.74e-004 9.02e-006 9.21e-002
74 2.87e-011 6.68e-011 7.36e-011 6.29e-003
75 1.55e-008 1.39e-007 1.39e-007 6.02e-006
76 2.81e-010 1.93e-011 1.93e-011 3.54e-009
77 3.96e-010 1.62e-009 1.62e-009 5.09e-011
78 2.01e-011 2.01e-011 2.01e-011 2.01e-011
79 3.33e-009 2.18e-006 2.18e-006 1.25e-006
80 8.01e-006 8.01e-006 8.01e-006 7.23e-005
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Table 3. Test results for the two algorithms.

No ‖fk − f∗‖2
M1 M2 M3 M4

81 6.23e-006 8.33e-006 8.33e-006 1.21e-002
82 2.13e-011 1.12e-010 1.42e-010 6.24e-007
83 2.54e-010 5.16e-010 5.28e-006 6.23e-003
84 9.19e-011 8.86e-011 8.48e-010 6.23e-005
85 4.34e-010 5.45e-010 5.45e-010 36.87e-010
86 6.17e-009 2.15e-009 3.31e-009 6.29e-009
87 1.16e-011 1.89e-010 1.90e-010 3.34e-007
88 3.34e-010 3.16e-010 3.28e-006 5.23e-003
89 1.57e-011 2.63e-011 2.32e-011 1.12e-003
90 3.58e-008 3.32e-007 3.32e-007 2.52e-007
91 3.71e-011 5.33e-011 5.93e-011 7.14e-006
92 1.26e-010 2.65e-009 2.65e-009 3.08e-009
93 9.01e-011 8.01e-011 8.01e-011 5.01e-011
94 4.90e-009 5.79e-006 5.09e-004 3.23e-005
95 2.46e-011 4.97e-011 4.09e-011 6.23e-006
96 1.35e-009 2.40e-010 2.48e-010 3.23e-009
97 4.37e-009 5.97e-010 5.97e-010 6.83e-009
98 6.11e-003 3.11e-003 3.11e-003 3.11e-003
99 164e-009 1.64e-009 1.64e-009 1.64e-009
100 6.09e-009 5.95e-09 5.95e-009 5.23e-011
101 2.42e-010 3.45e-011 3.62e-010 3.57e-010
102 1.65e-008 6.34e-008 6.34e-008 5.21e-002
103 2.43e-011 4.42e-010 4.42e-010 4.64e-007
104 1.54e-010 2.16e-010 2.28e-006 6.23e-009
105 8.57e-011 3.63e-011 3.32e-011 9.22e-003
106 3.15e-008 2.39e-007 2.39e-007 5.02e-006
107 2.81e-010 1.93e-009 1.93e-009 3.54e-008
108 3.96e-010 1.62e-009 1.62e-009 5.09e-010
109 2.01e-011 2.01e-011 2.01e-011 2.01e-011
110 3.53e-009 1.58e-006 1.58e-006 6.25e-005
111 1.03e-006 1.03e-006 1.03e-006 1.03e-006
112 2.45e-009 2.45e-009 2.45e-009 3.57e-010
113 8.57e-008 6.75e-008 6.81e-008 7.89e-008
114 5.16e-011 3.49e-010 3.80e-010 7.44e-007
115 1.14e-011 2.26e-010 3.38e-006 6.13e-008
116 3.27e-009 4.13e-010 5.31e-010 6.12e-003
117 1.22e-008 2.32e-007 2.32e-007 5.06e-007
118 5.21e-010 6.23e-011 6.93e-011 1.11e-006
119 6.16e-010 5.15e-009 5.15e-009 4.31e-009
120 2.21e-008 3.11e-008 3.11e-008 5.21e-005
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