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Abstract The parabolic partial differential equation arises in many application of technolo-
gies. In this paper, we propose an approximate method for solution of the heat
and advection-diffusion equations using Laguerre-Gaussians radial basis functions

(LG-RBFs). The results of numerical experiments are compared with the other ra-
dial basis functions and the results of other schemes to confirm the validity of the
presented method.
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1. Introduction

1.1. Introduction of the problem. Parabolic partial differential equations have a
wide range of applications for mathematical modelling of many phenomena. There-
fore, recently much attention has been paid in the literature to the analysis of accurate
methods for the numerical solution of time-dependent partial differential equations.
Consider the one-dimensional advection-diffusion equation

ut(x, t) + βux(x, t) = αuxx(x, t), 0 < x < L, 0 < t ≤ T, (1.1)

with the initial condition

u(x, 0) = f(x), 0 ≤ x ≤ L, (1.2)
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and the boundary conditions

u(0, t) = g0(t), u(L, t) = g1(t), 0 < t ≤ T, (1.3)

where β is an arbitrary constant which shows the speed of convection and the diffusion
coefficient, i.e. α is a positive constant. We assume that f(x), g0(t) and g1(t) are
suitably given functions. Eq. (1.1) has been used to describe heat transfer in a
draining film [25], thermal pollution in river systems [6], the dispersion of dissolved
material in estuaries and coastal seas [22], contaminant dispersion in shallow lakes
[42], long-range transport of pollutants in the atmosphere [53], water transfer in soils
[41], dispersion of dissolved salts in groundwater [19] and flow in porous media [32].
Much efforts has been put into developing accurate numerical methods [28, 29] for
the solution of (1.1). Mohebbi [37] proposed a class of new finite difference schemes
for solving the one-dimensional heat and advection-diffusion equations. Dehghan [7]
presented weighted finite difference techniques for solving this problem. In [48], a
high-order compact boundary value method was employed for solution of the heat
equations. In the present paper, a numerical scheme will be developed and compared
for solving this equation.

1.2. Introduction of the Radial Basis Function. During the recent decades,
many numerical methods have been designed for solving various types of problems
[1, 2, 21, 23, 24]. Recently, the new advanced computational schemes called meshless
methods have been widely employed to solve partial differential equations [4, 5, 49]).
The meshless methods based on the radial basis functions are very powerful computa-
tional schemes to deal with high-dimensional problems or mathematical models with
irregular domain. They are classified into two main categories: strong-form methods
such as radial basis collocation schemes (Kansa’s method) [15, 16, 26, 27, 35, 40]
and weak-form methods such as radial point interpolation scheme [3, 8, 36, 44-47].
Recently, authors have developed and well-used some meshless methods for solving
various types of problems [8-14].
To our best learning, researchers have introduced the space-time meshless formula-
tion. Li and Mao published work on the space-time approach using RBFs [34]. They
used the global collocation scheme using the Multiquadric function. Netuzhylov de-
veloped the space-time meshfree collocation scheme based upon the Interpolating
Moving Least Squares (IMLS) method and used it to solve coupled problems with
moving boundaries [38]. Young et al. [52] have applied time-dependent fundamental
solutions to solve homogeneous diffusion equations. Their proposed method can be
considered a space-time collocation scheme as it is free from time discretization.
Some well-known RBFs are listed in Table 1. The kind of RBFs, we will be mostly

interested in, are the Gaussians ϕ(r) = e−ε2r2 . Other families of radial basis functions
are the Laguerre-Gaussians. The definition of Laguerre-Gaussians functions family
comes from the generalized Laguerre polynomials of degree n and order s/2 [39].
Laguerre-Gaussians are infinitely smooth, oscillatory functions and strictly positive
definite. Specific examples are listed in Table 2. A numerical method using Laguerre-
Gaussians functions was proposed for solving the one-dimensional heat equation sub-
ject to initial-boundary conditions in [30].
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Table 1. Some well-known functions that generate RBFs.

Name of Radial Basis Function Definition

Multiquadric(MQ) ϕ(r) =
√
ε2 + r2

Inverse Quadratic(IQ) ϕ(r) = 1
(ε2+r2)

Inverse Multiquadric(IMQ) ϕ(r) = 1√
ε2+r2

Gaussian(GA) ϕ(r) = e−ε2r2

Thin Plate Splines(TPS) ϕ(r) = r2log(r)

In RBF theory, for a fixed basis function ϕ and shape parameter ε, good approxi-

Table 2. Laguerre-Gaussians radial functions.

s n=1 n=2

1 ϕ(r) = ( 32 − (εr)2)e(−εr)2 ϕ(r) = ( 158 − 5
2 (εr)

2 + 1
2 (εr)

4)e(−εr)2

2 ϕ(r) = (2− (εr)2)e(−εr)2 ϕ(r) = (3− 3(εr)2 + 1
2 (εr)

4)e(−εr)2

3 ϕ(r) = ( 52 − (εr)2)e(−εr)2 ϕ(r) = ( 358 − 7
2 (εr)

2 + 1
2 (εr)

4)e(−εr)2

mation quality requires small

hX = sup
χ

min
χi

∥χ− χi∥2, χ = (x, t)

and fine stability needs large

qX = 1/2 min
1≤i,j≤N

∥χj − χi∥2, χ = (x, t).

However one cannot minimize hX and maximize qX at the same time which is referred
to as uncertainty relation in [43]. In the all RBFs consider here, the small shape pa-
rameter ε decreases (hX and subsequently) the error of approximation solution and
increases (qX and subsequently) the condition number, and contrariwise. However
many researchers have attempted to develop algorithms for choosing optimal values
of the shape parameter but the optimal choice of the shape parameter is still an open
question and it is most often selected by brute force. For example, Franke [18] sug-

gested ε2 = 1.25D/
√
N in MQ basis, where D is the diameter of the smallest circle

containing all data points and N is the number of data points. Hardy [20] recom-

mended the use of ε2 = 0.815d where d = (1/N)
∑N

i=1 di and di is the distance from
the data point xi to its nearest neighbor. Recently, Fornberg developed a Contour-
Padé algorithm that is capable of stably computing the RBF approximation for all
ε > 0 [17].

2. Radial basis function

2.1. Definition of RBF. Let R+ = {x ∈ R, x ≥ 0}, ∥.∥2 denotes the Euclidean norm
and ϕ : R+ → R be a continuous function with ϕ(0) ≥ 0. A radial basis function on
Rd is a function of the form:

ϕ(∥x− xi∥),
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which depends only on the distance between x ∈ Rd and a fixed point xi ∈ Rd. So
that the radial basis function ϕi is radially symmetric about the center xi. Let x1, x2,
· · · , xN ∈ Ω ⊂ Rd be a given set of scattered data. Let r be the Euclidean distance
between a fixed point xi ∈ Rd and x ∈ Rd, i.e. ∥x− xi∥2.
The standard RBFs are categorized into two major classes [14, 31]:

• Class 1. Infinitely smooth RBFs: These basis functions are infinitely differ-
entiable and heavily depend on the shape parameter ε (such as multiquadric
(MQ), Gaussian (GA), inverse multiquadric (IMQ) and inverse quadric (IQ)).

• Class 2. Infinitely smooth (except at centers) RBFs: The basis functions of
this category are not infinitely differentiable. These basis functions are shape
parameter free and have comparatively less accuracy than the basis functions
discussed in Class 1 (such as Thin plate Spline (TPS)).

We have the following theorem about the convergence of RBFs interpolation.

Theorem 2.1. Assume {xi}Ni=1 are N nodes in Ω ⊂ Rd which is convex, let:

h = max
x∈Ω

min
1≤i≤N

∥x− xi∥2,

when ϕ̂(η) < c(1+ | η |)−2l+d, for any y satisfing
∫
(ŷ(η))2/ϕ̂(η)dη < ∞, we have:

∥y(α)N − y(α)∥ < chl−α,

where ϕ is RBFs and the constant c depends on the RBFs, ϕ̂ and ŷ are supposed to
be the Fourier transforms of ϕ and y respectively, y(α) denotes the αth derivative of
y, yN is the RBFs approximation of y, d is space dimension, l and α are nonnegative
integers.

Proof. A complete proof is given by authors [50, 51]. �
2.2. Function approximation. Let X = L2([0, L]× [0, T ]) and

{ϕ00(x, t), ..., ϕ0M (x, t), ϕ10(x, t), ..., ϕ1M (x, t), ..., ϕN0(x, t), ..., ϕNM (x, t)} ⊂ X

be the set of RBFs and

H = span{ϕ00(x, t), ..., ϕ0M (x, t), ϕ10(x, t), ..., ϕ1M (x, t), ..., ϕN0(x, t), ..., ϕNM (x, t)},
suppose that h be an arbitrary element in X. Since H is a finite dimensional vector
space, h has the unique best approximation out of H as hNM ∈ H, that is [33]:

∀g ∈ H, ∥h− hNM∥2 ≤ ∥h− g∥2.
Since hNM ∈ H, there exist unique coefficients c00, ..., c0M , c10, ..., c1M , ..., cN0, ..., cNM

such that:

h ≃ hNM =
N∑
i=0

M∑
j=0

cijϕij(x, t) = CTΦNM (x, t) = ΦT
NM (x, t)C,

where C and ΦNM (x, t) are vectors with the form:

C = [c00, ..., c0M , c10, ..., c1M , ..., cN0, ..., cNM ]T , (2.1)

ΦNM (x, t) = [ϕ00(x, t), ..., ϕ0M (x, t), ϕ10(x, t)..., ϕNM (x, t)]T . (2.2)
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3. The solution of the problem via radial basis functions

In This section we present a numerical scheme to solve the one-dimensional advection-
diffusion equations using the collocation method and Laguerre-Gaussian radial basis
functions. Radial basis function methods are known as a mesh-less scheme for solv-
ing partial differential equations numerically. Other methods such as finite-difference
methods are known as an efficient class of techniqes for solving PDEs, but there are
some problems in using these methods. These schemes are efficient especially for
solving problems with arbitrary geometry. But finding a body-fitted mesh is time-
consuming and hard to use. Also, it is difficult to obtain results with high order of
accuracy.
In the rest of this section we discuss the application of the radial basis functions for
solving parabolic partial differential equation.
Let

ut(x, t) + βux(x, t) = αuxx(x, t), (x, t) ∈ (0, L)× (0, T ], (3.1)

with the following initial and boundary conditions:

u(x, t) = f(x), (x, t) ∈ (0, L)× {0}, (3.2)

u(x, t) = g0(t), (x, t) ∈ {0} × (0, T ], (3.3)

u(x, t) = g1(t), (x, t) ∈ {L} × (0, T ]. (3.4)

Let

Ξ = {(xi, tj)|xi = L
i

N
, tj = T

j

M
, i = 0, 1, · · · , N, j = 0, 1, · · · ,M}. (3.5)

Using a RBFs method, the solution of the problem is considered as

ũ(x, t) =
N∑
i=0

M∑
j=0

cijϕij(x, t), (3.6)

where cij are unknown which remain to be determined and ϕij(x, t) is the Laguerre-

Gaussians, i.e. ϕij(x, t) = (2− ε2((x− xi)
2 + (t− tj)

2))e−ε2((x−xi)
2+(t−tj)

2). Now by
the collocation approach we impose the approximate solution ũ to satisfy the differ-
ential equation and the initial and boundary conditions at (xi, tj), i = 0, 1, ..., N, j =
0, 1, ...,M . So, we have

ũt(xi, tj) + βũx(xi, tj) = αũxx(xi, tj), (xi, tj) ∈ (0, L)× (0, T ], (3.7)

ũ(xi, tj) = f(xi), (xi, tj) ∈ (0, L)× {0}, (3.8)

ũ(xi, tj) = g0(tj), (xi, tj) ∈ {0} × (0, T ], (3.9)

ũ(xi, tj) = g1(tj), (xi, tj) ∈ {L} × (0, T ], (3.10)
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Table 3. Computational results for Example 1.

x Method [37] Present method
Pe = 1000 Pe = 10, 000 LG-RBF MQ-RBF IMQ-RBF

0.25 1.4e-06 1.0e-06 2.9e-09 1.2e-05 3.2e-06
0.50 1.7e-06 4.9e-07 5.8e-09 2.2e-05 6.3e-06
0.75 1.9e-06 6.9e-06 5.8e-09 4.0e-05 1.1e-05
1.00 9.7e-07 2.6e-05 1.8e-08 5.9e-05 1.6e-05
1.25 1.1e-07 7.0e-05 1.3e-08 8.3e-05 1.8e-05
1.50 2.0e-07 1.6e-04 3.7e-07 9.9e-05 1.5e-05
1.75 2.9e-07 2.7e-04 1.2e-07 8.9e-05 2.7e-06

which results a linear system of equations. Solving the resulted system, the unknown
values cij , i = 0, 1, ..., N, j = 0, 1, ...,M can be found. Similarly, we approximate the
solution for MQ and IMQ basis functions.

4. Numerical examples

In this section we give some computational results of numerical experiments with
the method based on the preceding sections, to support our theoretical discussion.
In the process of computation, all the symbolic and numerical computations are per-
formed by using Maple. The readers can see the efficiency of the proposed method
from the provided figures and tables in the following examples.

Example 1. Consider Eqs. (1.1)-(1.3) with L = 2, T = 1 and

f(x) = sin(x), g0(t) = e−αt sin(−βt), g1(t) = e−αt sin(1− βt), (4.1)

which has the exact solution

u(x, t) = e−αt sin(x− βt). (4.2)

For this problem we put β = 1. In Table 3 we give the absolute errors with dx =
dt = 0.0714 for LG-RBFs with ε = 0.5, and for MQ and IMQ basis functions with
ε = 5.3 at final time T = 1. To compare our result we give the absolute errors for
the Compact finite difference scheme [37]. Analytical and numerical solutions for
0 ≤ t ≤ 1 and T = 1 are given in Figure 1.
Example 2. Consider the heat equation

ut(x, t) =
1

π2
uxx(x, t), (4.3)

with L = 1, T = 1 and

f(x) = sin(πx), g0(t) = 0, g1(t) = 0, (4.4)

which has the exact solution

u(x, t) = e−t sin(πx). (4.5)

In Table 4 we give the absolute errors for LG-RBFs with dx = dt = 0.1 and ε = 0.5,
and with dx = dt = 0.0667, dx = dt = 0.05 and ε = 0.4 at final time T = 1. In Table
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Figure 1. Analytical (line) and estimated (point) solutions with
dx = dt = 0.0714 and ε = 0.5 for (a) 0 ≤ t ≤ 1 and (b) T = 1 from
Example 1.

5 maximum errors obtained for LG-RBF are presented. Also we give maximum errors
for MQ and IMQ basis functions with dx = dt = 0.1 and ε = 5.6, and with dx =
dt = 0.05 and ε = 4.6. We compared our method together with high-order compact
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boundary value method [48] and compact finite difference scheme [37]. Analytical
and numerical solutions for 0 ≤ t ≤ 1 and T = 1 are given in Figure 2.

5. Conclusion

A RBF-based numerical method was proposed for solving the one-dimensional
heat and advection-diffusion equations. The Laguerre-Gaussians radial basis functions
(LG-RBFs) on interval x ∈ [0, L] and t ∈ [0, T ] were employed. The method was based
upon reducing the system into a set of algebraic equations. This algorithm proposed
in the current paper was tested for MQ and IMQ functions on several examples from
the literature. The obtained results showed that this approach using LG-RBFs can
solve the problem effectively.
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Table 4. Computational results for Example 2.

x Present method with
M = N = 10, ε = 0.5 M = N = 15, ε = 0.4 M = N = 20, ε = 0.4

0.1 1.4239e-07 3.8969e-09 1.5686e-10
0.2 2.7072e-07 1.0942e-08 8.6829e-11
0.3 3.7207e-07 1.3111e-08 8.8855e-11
0.4 4.3692e-07 1.0763e-08 1.6711e-10
0.5 4.5931e-07 1.0829e-08 1.0856e-10
0.6 4.3732e-07 2.6629e-09 2.8712e-10
0.7 3.7285e-07 1.2411e-08 9.8855e-11
0.8 2.7173e-07 6.1578e-09 7.8830e-11
0.9 1.4323e-07 1.4603e-08 2.1134e-11

Table 5. Maximum errors obtained for Example 2.

M = N CBVM [48] method [37] Present method with
LG-RBF MQ-RBF IMQ-RBF

10 1.5e-05 1.5e-05 4.6e-07 3.6e-08 9.9e-07
20 9.5e-07 9.4e-07 2.9e-10 1.3e-09 2.7e-09
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Figure 2. Analytical (line) and estimated (point) solutions with
dx = dt = 0.1 and ε = 0.5 for (a) 0 ≤ t ≤ 1 and (b) T = 1 from
Example 2.
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